??xml version="1.0" encoding="utf-8" standalone="yes"?>在线播放国产精品 ,夜色福利资源站www国产在线视频 夜色资源站国产www在线视频 ,精品国产乱码久久久久久88avhttp://www.aygfsteel.com/zellux/category/24281.html盲目、宽泛、Qw的学习W记 | 都大二了Qd学点什么了。。?/description>zh-cnSun, 18 Nov 2007 22:15:15 GMTSun, 18 Nov 2007 22:15:15 GMT60Exponentiating by squaring http://www.aygfsteel.com/zellux/archive/2007/11/18/161322.htmlZelluXZelluXSat, 17 Nov 2007 16:56:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/11/18/161322.htmlhttp://www.aygfsteel.com/zellux/comments/161322.htmlhttp://www.aygfsteel.com/zellux/archive/2007/11/18/161322.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/161322.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/161322.html

Exponentiating by squaring is an algorithm used for the fast computation of large integer powers of a number. It is also known as the square-and-multiply algorithm or binary exponentiation. In additive groups the appropriate name is double-and-add algorithm. It implicitly uses the binary expansion of the exponent. It is of quite general use, for example in modular arithmetic.



ZelluX 2007-11-18 00:56 发表评论
]]>
拿糖果的博弈问题http://www.aygfsteel.com/zellux/archive/2007/10/16/153205.htmlZelluXZelluXTue, 16 Oct 2007 03:30:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/10/16/153205.htmlhttp://www.aygfsteel.com/zellux/comments/153205.htmlhttp://www.aygfsteel.com/zellux/archive/2007/10/16/153205.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/153205.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/153205.html http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf


发信? flyskyf (flysky), 信区: Algorithm
? ? 拿糖果问?br /> 发信? 水木C֌ (Mon Oct 15 19:07:51 2007), 站内

现有4堆糖?分别?,2,4,8
甲乙两h分别从中拿糖?br />
规则:
1 每h可以从某一堆中拿Q意多?br /> 2 甲乙两h交替?br /> 3 谁拿到最后一个糖果或最后几个糖果算?

请问谁有必胜把握?怎样实现?


发信? meeme (c鸣), 信区: Algorithm
? ? Re: 拿糖果问?br /> 发信? 水木C֌ (Mon Oct 15 19:26:32 2007), 站内

转成二进?br />
1   =0001
2   =0010
4   =0100
8-1 =0111   +
-----------
     0222
q样每个位上都有两个1?br /> 比如个位上,1?在个位上都有一?
Ҏ不可能同时把q两?拿走。所以对Ҏ拿不完的?br /> Ҏ拿完之后Q自己再拿若q个调整成这U状态?br />
中间应该有不证?..




ZelluX 2007-10-16 11:30 发表评论
]]>
Ferrers囑փ http://www.aygfsteel.com/zellux/archive/2007/10/16/153197.htmlZelluXZelluXTue, 16 Oct 2007 03:19:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/10/16/153197.htmlhttp://www.aygfsteel.com/zellux/comments/153197.htmlhttp://www.aygfsteel.com/zellux/archive/2007/10/16/153197.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/153197.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/153197.html
Ferrers囑փ 

    一个从上而下的n层格子,mi 为第i层的格子敎ͼ当mi>=mi+1(i=1,2,...,n-1) Q即上层的格子数不少于下层的格子数时Q称之ؓFerrers囑փQ如?2-6-2)C?nbsp;

        

                                 ?nbsp;  (2-6-2)

    Ferrers囑փh如下性质Q?nbsp;

    1.每一层至有一个格子?nbsp;

    2.W一行与W一列互换,W二行于W二列互换,…Q即?2-6-3)l虚Uu旋{所得的图仍然是Ferrers囑փ。两个Ferrers 囑փUCؓ一对共轭的Ferrers囑փ?nbsp;

    利用Ferrers囑փ可得关于整数拆分的十分有的l果?nbsp;

    (a)整数n拆分成k个数的和的拆分数Q和数n拆分成个数的和的拆分数相{?nbsp;

    因整数n拆分成k个数的和的拆分可用一k行的囑փ表示。所得的Ferrers囑փ的共轭图像最上面一行有k个格子。例如: 

      

?nbsp;  (2-6-3)      

    (b)整数n拆分成最多不过m个数的和的拆分数Q和n拆分成最大不过m的拆分数相等? 理由?a)相类伹{?nbsp;

    因此Q拆分成最多不过m个数的和的拆分数的母函数?nbsp;

       

    拆分成最多不过m-1个数的和的拆分数的母函数?nbsp;

       

    所以正好拆分成m个数的和的拆分数的母函数?nbsp;

       

    (c)整数n拆分成互不相同的若干奇数的和的的拆分?和n拆分成自p的Ferrers囑փ的拆分数相等. ?nbsp;

       

其中n1>n2>...>nk 

    构造一个Ferrers囑փQ其W一行,W一列都是n1+1|对应?n1+1Q第二行Q第二列各n2+1|对应?n2+1。以此类推。由此得到的Ferres囑փ是共轭的。反q来也一栗?nbsp;

    例如 17=9+5+3 对应为Ferrers囑փ?

       

?nbsp;  (2-6-4)

       


费勒斯(FerrersQ图?o:p>

假定n拆分为n=n1+n2+n3+……+nkQ且n1>=n2>=n3>=……>=nk

我们它排列成阶梯ŞQ左边看齐,我们可以得到一个类似倒阶梯图像,q种囑փ我们UC为Ferrers囑փQ如对于20=10+5+4+1Q我们有囑փQ?/p>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

对于Ferrers囑փQ我们很Ҏ知道以下两条性质Q?/p>

Q?Q?nbsp;     每层臛_一个格?o:p>

Q?Q?nbsp;     行列互换Q所对应的图像仍为Ferrers囑փQ他应该囑փ的共轭图?o:p>

   L的Ferrers囑փ对应一个整数的拆分Q而可用Ferrers囑փ方便地证明:

Q?Q?nbsp;     n拆分为k个整数的拆分敎ͼ与n拆分成最大数为k的拆分数相等

Q?Q?nbsp;     n拆分为最多不过k个数的拆分数Q与n拆分成最大数不超qk的拆分数相等

Q?Q?nbsp;     n拆分Z不相同的若干奇数的拆分数Q与n拆分成图像自p的拆分的拆分数相{?o:p>




ZelluX 2007-10-16 11:19 发表评论
]]>
Catalan ?/title><link>http://www.aygfsteel.com/zellux/archive/2007/09/17/145952.html</link><dc:creator>ZelluX</dc:creator><author>ZelluX</author><pubDate>Mon, 17 Sep 2007 11:55:00 GMT</pubDate><guid>http://www.aygfsteel.com/zellux/archive/2007/09/17/145952.html</guid><wfw:comment>http://www.aygfsteel.com/zellux/comments/145952.html</wfw:comment><comments>http://www.aygfsteel.com/zellux/archive/2007/09/17/145952.html#Feedback</comments><slash:comments>2</slash:comments><wfw:commentRss>http://www.aygfsteel.com/zellux/comments/commentRss/145952.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/zellux/services/trackbacks/145952.html</trackback:ping><description><![CDATA[<p>n个不同的物体按固定次序入栈,随时可以出栈Q求最后可能的出栈序列的L?br /> 只想到这个问题等价于把n个push和n个pop操作排列Q要求Q意前几个操作中push数都不能于pop敎ͼ至于q个排列数怎么求就不知道了。请教了peter大牛后,原来q就是一个Catalan数的应用?br /> </p> <p>Wikipedia上的Catalan numbers:<br /> </p> <p>In <a title="Combinatorial mathematics" >combinatorial mathematics</a>, the <strong>Catalan numbers</strong> form a <a title="Sequence" >sequence</a> of <a title="Natural number" >natural numbers</a> that occur in various <a title="Counting problem" >counting problems</a>, often involving <a title="Recursion" >recursively</a> defined objects. They are named for the <a title="Belgium" >Belgian</a> <a title="Mathematician" >mathematician</a> <a title="Eugène Charles Catalan" >Eugène Charles Catalan</a> (1814–1894).</p> <p>The <em>n</em><sup>th</sup> Catalan number is given directly in terms of <a title="Binomial coefficient" >binomial coefficients</a> by</p> <dl> <dd><img class="tex" alt="C_n = \frac{1}{n+1}{2n\choose n} = \frac{(2n)!}{(n+1)!\,n!} \qquad\mbox{ for }n\ge 0." src="http://en.wikilib.com/images/math/3/b/d/3bd4ac77a4af3f894d8e88ed7e1ba418.png" /></dd></dl> <p>The first Catalan numbers (sequence <a class="extiw" title="oeis:A000108" >A000108</a> in <a title="On-Line Encyclopedia of Integer Sequences" >OEIS</a>) for <em>n</em> = 0, 1, 2, 3, … are</p> <dl> <dd><a title="1 (number)" >1</a>, <a title="1 (number)" >1</a>, <a title="2 (number)" >2</a>, <a class="new" title="5 (number)" >5</a>, <a title="14 (number)" >14</a>, <a title="42 (number)" >42</a>, <a title="132 (number)" >132</a>, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …</dd></dl> <h2>Properties</h2> <p>An alternative expression for <em>C</em><sub><em>n</em></sub> is</p> <dl> <dd><img class="tex" alt="C_n = {2n\choose n} - {2n\choose n-1} \quad\mbox{ for }n\ge 1." src="http://en.wikilib.com/images/math/b/c/b/bcbb18522547b930bde29e1bedc2b058.png" /></dd></dl> <p>This shows that <em>C</em><sub><em>n</em></sub> is a <a title="Natural number" >natural number</a>, which is not <em>a priori</em> obvious from the first formula given. This expression forms the basis for André's proof of the correctness of the formula (see below under <a title="" >second proof</a>).</p> <p>The Catalan numbers satisfy the <a title="Recurrence relation" >recurrence relation</a></p> <dl> <dd><img class="tex" alt="C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0." src="http://en.wikilib.com/images/math/6/2/1/6217b3c99a3243afcd5d8dbd58186822.png" /></dd></dl> <p>They also satisfy:</p> <dl> <dd><img class="tex" alt="C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\frac{2(2n+1)}{n+2}C_n," src="http://en.wikilib.com/images/math/8/a/4/8a49332e4a46b3a2c7accec81160f5e3.png" /></dd></dl> <p>which can be a more efficient way to calculate them.</p> <p>Asymptotically, the Catalan numbers grow as</p> <dl> <dd><img class="tex" alt="C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}" src="http://en.wikilib.com/images/math/3/f/8/3f838aaa56c7ec71f80454fc181fea99.png" /></dd></dl> <p>in the sense that the quotient of the <em>n</em><sup>th</sup> Catalan number and the expression on the right <a title="Limit (mathematics)" >tends towards</a> 1 for <em>n</em> → ∞. (This can be proved by using <a title="Stirling's approximation" s approximation</a> for <em>n</em>!.)</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Applications in combinatorics" >edit</a>]</div> <p><a id="Applications_in_combinatorics" name="Applications_in_combinatorics"></a></p> <h2>Applications in combinatorics</h2> <p>There are many counting problems in <a title="Combinatorics" >combinatorics</a> whose solution is given by the Catalan numbers. The book <em>Enumerative Combinatorics: Volume 2</em> by combinatorialist <a title="Richard P. Stanley" >Richard P. Stanley</a> contains a set of exercises which describe 66 different interpretations of the Catalan numbers. Following are some examples, with illustrations of the case <em>C</em><sub>3</sub> = 5.</p> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <strong>Dyck words</strong> of length 2<em>n</em>. A Dyck word is a <a title="String (computer science)" >string</a> consisting of <em>n</em> X's and <em>n</em> Y's such that no initial segment of the string has more Y's than X's (see also <a title="Dyck language" >Dyck language</a>). For example, the following are the Dyck words of length 6:</li> </ul> <div id="wmqeeuq" class="center"><big>XXXYYY     XYXXYY     XYXYXY     XXYYXY     XXYXYY.</big></div> <ul> <li>Re-interpreting the symbol X as an open <a title="Parenthesis" >parenthesis</a> and Y as a close parenthesis, <em>C</em><sub><em>n</em></sub> counts the number of expressions containing <em>n</em> pairs of parentheses which are correctly matched:</li> </ul> <div id="wmqeeuq" class="center"><big>((()))     ()(())     ()()()     (())()     (()())</big></div> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of different ways <em>n</em> + 1 factors can be completely <a title="Bracket" >parenthesized</a> (or the number of ways of <a title="Associativity" >associating</a> <em>n</em> applications of a <a title="Binary operator" >binary operator</a>). For <em>n</em> = 3 for example, we have the following five different parenthesizations of four factors:</li> </ul> <div id="wmqeeuq" class="center"><img class="tex" alt="((ab)c)d \quad (a(bc))d \quad(ab)(cd) \quad a((bc)d) \quad a(b(cd))" src="http://en.wikilib.com/images/math/0/f/9/0f95f511173c52ef07ab865ac7bc9b3f.png" /></div> <ul> <li>Successive applications of a binary operator can be represented in terms of a <a title="Binary tree" >binary tree</a>. It follows that <em>C</em><sub><em>n</em></sub> is the number of rooted ordered binary <a title="Tree (graph theory)" >trees</a> with <em>n</em> + 1 leaves:</li> </ul> <div id="wmqeeuq" class="center"> <div id="wmqeeuq" class="floatnone"><span><a class="image" title="" ><img height="92" alt="" src="http://en.wikilib.com/images/0/01/Catalan_number_binary_tree_example.png" width="496" longdesc="/wiki/Image:Catalan_number_binary_tree_example.png" /></a></span></div> </div> <p>If the leaves are labelled, we have the <a title="" >quadruple factorial</a> numbers.</p> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of non-isomorphic full binary trees with <em>n</em> vertices that have children, usually called internal vertices or branches. (A rooted binary tree is <em>full</em> if every vertex has either two children or no children.)</li> </ul> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <strong>monotonic paths</strong> along the edges of a grid with <em>n</em> × <em>n</em> square cells, which do not cross the diagonal. A monotonic path is one which starts in the lower left corner, finishes in the upper right corner, and consists entirely of edges pointing rightwards or upwards. Counting such paths is equivalent to counting Dyck words: X stands for "move right" and Y stands for "move up". The following diagrams show the case <em>n</em> = 4:</li> </ul> <div id="wmqeeuq" class="center"> <div id="wmqeeuq" class="floatnone"><span><a class="new" title="Image:Catalan number 4x4 grid example.svg" >Image:Catalan number 4x4 grid example.svg</a></span></div> </div> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of different ways a <a title="Convex polygon" >convex polygon</a> with <em>n</em> + 2 sides can be cut into <a title="Triangle (geometry)" >triangles</a> by connecting vertices with <a title="Straight line" >straight lines</a>. The following hexagons illustrate the case <em>n</em> = 4:</li> </ul> <div id="wmqeeuq" class="center"> <div id="wmqeeuq" class="floatnone"><span>Error creating thumbnail:</span></div> </div> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <a title="Stack" >stack</a>-sortable <a title="Permutation" >permutations</a> of {1, ..., <em>n</em>}. A permutation <em>w</em> is called <strong>stack-sortable</strong> if <em>S</em>(<em>w</em>) = (1, ..., <em>n</em>), where <em>S</em>(<em>w</em>) is defined recursively as follows: write <em>w</em> = <em>unv</em> where <em>n</em> is the largest element in <em>w</em> and <em>u</em> and <em>v</em> are shorter sequences, and set <em>S</em>(<em>w</em>) = <em>S</em>(<em>u</em>)<em>S</em>(<em>v</em>)<em>n</em>, with <em>S</em> being the identity for one-element sequences.</li> </ul> <ul> <li><em>C</em><sub><em>n</em></sub> is the number of <a title="Noncrossing partition" >noncrossing partitions</a> of the set { 1, ..., <em>n</em> }. <em>A fortiori</em>, <em>C</em><sub><em>n</em></sub> never exceeds the <em>n</em>th <a title="Bell numbers" >Bell number</a>. <em>C</em><sub><em>n</em></sub> is also the number of noncrossing partitions of the set { 1, ..., 2<em>n</em> } in which every block is of size 2. The conjunction of these two facts may be used in a proof by <a title="Mathematical induction" >mathematical induction</a> that all of the <em>free</em> <a title="Cumulant" >cumulants</a> of degree more than 2 of the <a title="Wigner semicircle law" >Wigner semicircle law</a> are zero. This law is important in <a title="Free probability" >free probability</a> theory and the theory of <a title="Random matrices" >random matrices</a>.</li> </ul> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Proof of the formula" >edit</a>]</div> <p><a id="Proof_of_the_formula" name="Proof_of_the_formula"></a></p> <h2>Proof of the formula</h2> <p>There are several ways of explaining why the formula</p> <dl> <dd><img class="tex" alt="C_n = \frac{1}{n+1}{2n\choose n}" src="http://en.wikilib.com/images/math/2/f/7/2f7536241ecfa219d69ce879aee0b690.png" /></dd></dl> <p>solves the combinatorial problems listed above. The first proof below uses a <a title="Generating function" >generating function</a>. The second and third proofs are examples of <a title="Bijective proof" >bijective proofs</a>; they involve literally counting a collection of some kind of object to arrive at the correct formula.</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: First proof" >edit</a>]</div> <p><a id="First_proof" name="First_proof"></a></p> <h3>First proof</h3> <p>We start with the observation that several of the combinatorial problems listed above can easily be seen to satisfy the <a title="Recurrence relation" >recurrence relation</a></p> <dl> <dd><img class="tex" alt="C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0." src="http://en.wikilib.com/images/math/6/2/1/6217b3c99a3243afcd5d8dbd58186822.png" /></dd></dl> <p>For example, every Dyck word <em>w</em> of length ≥ 2 can be written in a unique way in the form</p> <dl> <dd><em>w</em> = X<em>w</em><sub>1</sub>Y<em>w</em><sub>2</sub></dd></dl> <p>with (possibly empty) Dyck words <em>w</em><sub>1</sub> and <em>w</em><sub>2</sub>.</p> <p>The <a title="Generating function" >generating function</a> for the Catalan numbers is defined by</p> <dl> <dd><img class="tex" alt="c(x)=\sum_{n=0}^\infty C_n x^n." src="http://en.wikilib.com/images/math/0/9/9/099acd90b5a02e418266e228dce42baa.png" /></dd></dl> <p>As explained in the article titled <a title="Cauchy product" >Cauchy product</a>, the sum on the right side of the above recurrence relation is the coefficient of <em>x</em><sup><em>n</em></sup> in the product</p> <dl> <dd><img class="tex" alt="\left(\sum_{i=0}^\infty C_i x^i\right)^2." src="http://en.wikilib.com/images/math/0/9/b/09b5ee7eef383a2195ea39fe80ad6326.png" /></dd></dl> <p>Therefore</p> <dl> <dd><img class="tex" alt="\left(\sum_{i=0}^\infty C_i x^i\right)^2 = \sum_{n=0}^\infty C_{n+1} x^n." src="http://en.wikilib.com/images/math/7/e/d/7edde9913f5f6539332dc91d07a0f06a.png" /></dd></dl> <p>Multiplying both sides by <em>x</em>, we get</p> <dl> <dd><img class="tex" alt="x\left(\sum_{i=0}^\infty C_i x^i\right)^2 = \sum_{n=0}^\infty C_{n+1} x^{n+1} = \sum_{n=1}^\infty C_n x^n = -1 + \sum_{n=0}^\infty C_n x^n." src="http://en.wikilib.com/images/math/6/d/7/6d772a87129eaeaac18cb5593c5f4744.png" /></dd></dl> <p>So we have</p> <dl> <dd><img class="tex" alt="c(x)=1+xc(x)^2,\," src="http://en.wikilib.com/images/math/3/e/9/3e94115a8614394d2173f5e236666409.png" /></dd></dl> <p>and hence</p> <dl> <dd><img class="tex" alt="c(x) = \frac{1-\sqrt{1-4x}}{2x}." src="http://en.wikilib.com/images/math/5/5/f/55f71088f2677c2c0ca9fc2803bb381a.png" /></dd></dl> <p>The square root term can be expanded as a power series using the identity</p> <dl> <dd><img class="tex" alt="\sqrt{1+y} = 1 - 2\sum_{n=1}^\infty {2n-2 \choose n-1} \left(\frac{-1}{4}\right)^n \frac{y^n}{n} ," src="http://en.wikilib.com/images/math/f/9/3/f93a1c2e37d78a6ccc19a093f32288d0.png" /></dd></dl> <p>which can be proved, for example, by the <a title="Binomial theorem" >binomial theorem</a>, (or else directly by considering repeated derivatives of <img class="tex" alt="\sqrt{1+y}" src="http://en.wikilib.com/images/math/3/5/9/359cde1ccf64c847be8a3a89003911ae.png" />) together with judicious juggling of factorials. Substituting this into the above expression for <em>c</em>(<em>x</em>) produces, after further manipulation,</p> <dl> <dd><img class="tex" alt="c(x) = \sum_{n=0}^\infty {2n \choose n} \frac{x^n}{n+1.}" src="http://en.wikilib.com/images/math/9/7/0/970cda73b92cc5fcd73ea50e1f1a4150.png" /></dd></dl> <p>Equating coefficients yields the desired formula for <em>C</em><sub><em>n</em></sub>.</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Second proof" >edit</a>]</div> <p><a id="Second_proof" name="Second_proof"></a></p> <h3>Second proof</h3> <p>This proof depends on a trick due to D. André, which is now more generally known as the <a class="new" title="Reflection principle (combinatorics)" >reflection principle</a> (not to be confused with the <a class="new" title="Schwarz reflection theorem" >Schwarz reflection theorem</a> in <a title="Complex analysis" >complex analysis</a>). It is most easily expressed in terms of the "monotonic paths which do not cross the diagonal" problem (see <a title="" >above</a>).</p> <div id="wmqeeuq" class="thumb tright"> <div style="width: 308px"><a class="internal" title="Figure 1. The green portion of the path is being flipped." ><img height="164" alt="Figure 1. The green portion of the path is being flipped." src="http://en.wikilib.com/images/3/3f/Catalan_number_reflection_example.png" width="306" longdesc="/wiki/Image:Catalan_number_reflection_example.png" /></a> <div id="wmqeeuq" class="thumbcaption">Figure 1. The green portion of the path is being flipped.</div> </div> </div> <p>Suppose we are given a monotonic path in an <em>n</em> × <em>n</em> grid that <em>does</em> cross the diagonal. Find the first edge in the path that lies above the diagonal, and <em>flip</em> the portion of the path occurring after that edge, along a line parallel to the diagonal. (In terms of Dyck words, we are starting with a sequence of <em>n</em> X's and <em>n</em> Y's which is <em>not</em> a Dyck word, and exchanging all X's with Y's after the first Y that violates the Dyck condition.) The resulting path is a monotonic path in an (<em>n</em> − 1) × (<em>n</em> + 1) grid. Figure 1 illustrates this procedure; the green portion of the path is the portion being flipped.</p> <p>Since every monotonic path in the (<em>n</em> − 1) × (<em>n</em> + 1) grid must cross the diagonal at some point, every such path can be obtained in this fashion in precisely one way. The number of these paths is equal to</p> <dl> <dd><img class="tex" alt="{2n\choose n-1}" src="http://en.wikilib.com/images/math/1/b/b/1bbba9502fa1bee3260b5a4d899ca8af.png" />.</dd></dl> <p>Therefore, to calculate the number of monotonic <em>n</em> × <em>n</em> paths which do <em>not</em> cross the diagonal, we need to subtract this from the <em>total</em> number of monotonic <em>n</em> × <em>n</em> paths, so we finally obtain</p> <dl> <dd><img class="tex" alt="{2n\choose n}-{2n\choose n-1}" src="http://en.wikilib.com/images/math/5/8/d/58d2e21c221b2e3b3876c4331600f7ca.png" /></dd></dl> <p>which is the <em>n</em>th Catalan number <em>C</em><sub><em>n</em></sub>.</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Third proof" >edit</a>]</div> <p><a id="Third_proof" name="Third_proof"></a></p> <h3>Third proof</h3> <p>The following bijective proof, while being more involved than the previous one, provides a more natural explanation for the term <em>n</em> + 1 appearing in the denominator of the formula for <em>C</em><sub><em>n</em></sub>.</p> <div id="wmqeeuq" class="thumb tright"> <div style="width: 146px"><a class="internal" title="Figure 2. A path with exceedance 5." ><img height="143" alt="Figure 2. A path with exceedance 5." src="http://en.wikilib.com/images/a/aa/Catalan_number_exceedance_example.png" width="144" longdesc="/wiki/Image:Catalan_number_exceedance_example.png" /></a> <div id="wmqeeuq" class="thumbcaption">Figure 2. A path with exceedance 5.</div> </div> </div> <p>Suppose we are given a monotonic path, which may happen to cross the diagonal. The <strong>exceedance</strong> of the path is defined to be the number of pairs of edges which lie <em>above</em> the diagonal. For example, in Figure 2, the edges lying above the diagonal are marked in red, so the exceedance of the path is 5.</p> <p>Now, if we are given a monotonic path whose exceedance is not zero, then we may apply the following algorithm to construct a new path whose exceedance is one less than the one we started with.</p> <ul> <li>Starting from the bottom left, follow the path until it first travels above the diagonal.</li> <li>Continue to follow the path until it <em>touches</em> the diagonal again. Denote by <em>X</em> the first such edge that is reached.</li> <li>Swap the portion of the path occurring before <em>X</em> with the portion occurring after <em>X</em>.</li> </ul> <p>The following example should make this clearer. In Figure 3, the black circle indicates the point where the path first crosses the diagonal. The black edge is <em>X</em>, and we swap the red portion with the green portion to make a new path, shown in the second diagram.</p> <div id="wmqeeuq" class="center"> <div id="wmqeeuq" class="thumb tnone"> <div style="width: 343px"><a class="internal" title="Figure 3. The green and red portions are being exchanged." ><img height="156" alt="Figure 3. The green and red portions are being exchanged." src="http://en.wikilib.com/images/1/13/Catalan_number_swapping_example.png" width="341" longdesc="/wiki/Image:Catalan_number_swapping_example.png" /></a> <div id="wmqeeuq" class="thumbcaption">Figure 3. The green and red portions are being exchanged.</div> </div> </div> </div> <p>Notice that the exceedance has dropped from three to two. In fact, the algorithm will cause the exceedance to decrease by one, for any path that we feed it.</p> <div id="wmqeeuq" class="thumb tright"> <div style="width: 311px"><a class="internal" title="Figure 4. All monotonic paths in a 3×3 grid, illustrating the exceedance-decreasing algorithm." ><img height="338" alt="Figure 4. All monotonic paths in a 3×3 grid, illustrating the exceedance-decreasing algorithm." src="http://en.wikilib.com/images/6/65/Catalan_number_algorithm_table.png" width="309" longdesc="/wiki/Image:Catalan_number_algorithm_table.png" /></a> <div id="wmqeeuq" class="thumbcaption">Figure 4. All monotonic paths in a 3×3 grid, illustrating the exceedance-decreasing algorithm.</div> </div> </div> <p>It is also not difficult to see that this process is <em>reversible</em>: given any path <em>P</em> whose exceedance is less than <em>n</em>, there is exactly one path which yields <em>P</em> when the algorithm is applied to it.</p> <p>This implies that the number of paths of exceedance <em>n</em> is equal to the number of paths of exceedance <em>n</em> − 1, which is equal to the number of paths of exceedance <em>n</em> − 2, and so on, down to zero. In other words, we have split up the set of <em>all</em> monotonic paths into <em>n</em> + 1 equally sized classes, corresponding to the possible exceedances between 0 and <em>n</em>. Since there are</p> <dl> <dd><img class="tex" alt="{2n\choose n}" src="http://en.wikilib.com/images/math/c/9/2/c92da943df73dc077dbee5514376346a.png" /></dd></dl> <p>monotonic paths, we obtain the desired formula</p> <dl> <dd><img class="tex" alt="C_n = \frac{1}{n+1}{2n\choose n}." src="http://en.wikilib.com/images/math/c/d/d/cdd0aed4c95a95711a0dbe1bf2b627c8.png" /></dd></dl> <p>Figure 4 illustrates the situation for <em>n</em> = 3. Each of the 20 possible monotonic paths appears somewhere in the table. The first column shows all paths of exceedance three, which lie entirely above the diagonal. The columns to the right show the result of successive applications of the algorithm, with the exceedance decreasing one unit at a time. Since there are five rows, <em>C</em><sub>3</sub> = 5.</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Hankel matrix" >edit</a>]</div> <p><a id="Hankel_matrix" name="Hankel_matrix"></a></p> <h2>Hankel matrix</h2> <p>The <em>n</em>×<em>n</em> <a title="Hankel matrix" >Hankel matrix</a> whose (<em>i</em>, <em>j</em>) entry is the Catalan number <em>C</em><sub><em>i</em>+<em>j</em></sub> has <a title="Determinant" >determinant</a> 1, regardless of the value of <em>n</em>. For example, for <em>n</em> = 4 we have</p> <dl> <dd><img class="tex" alt="\det\begin{bmatrix}1 & 1 & 2 & 5 \\ 1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132\end{bmatrix} = 1" src="http://en.wikilib.com/images/math/b/3/4/b343632207d325a9034ca070c2ff4877.png" /></dd></dl> <p>Note that if the entries are ``shifted", namely the Catalan numbers <em>C</em><sub><em>i</em>+<em>j</em>+1</sub>, the determinant is still 1, regardless of the size of <em>n</em>. For example, for <em>n</em> = 4 we have</p> <dl> <dd><img class="tex" alt="\det\begin{bmatrix}1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 429 \end{bmatrix} = 1" src="http://en.wikilib.com/images/math/4/7/a/47a3417c3b5431effd27921e10843596.png" />.</dd></dl> <p>The Catalan numbers is the unique sequence with this property.</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: Quadruple factorial" >edit</a>]</div> <p><a id="Quadruple_factorial" name="Quadruple_factorial"></a></p> <h2>Quadruple factorial</h2> <p>The quadruple factorial is given by <img class="tex" alt="\frac{2n!}{n!}" src="http://en.wikilib.com/images/math/7/1/6/71601208bc5bcedbb64efa37fd859312.png" />, or <img class="tex" alt="\left(n+1\right)! C_n" src="http://en.wikilib.com/images/math/0/6/0/060bab7aad3b5f3d54db456ec19ec64b.png" />. This is the solution to labelled variants of the above combinatorics problems. It is entirely distinct from the <a title="Factorial" >multifactorials</a>.</p> <p> </p> <div id="wmqeeuq" class="editsection" style="float: right; margin-left: 5px">[<a title="Edit section: History" >edit</a>]</div> <p><a id="History" name="History"></a></p> <h2>History</h2> <p>The Catalan sequence was first described in the <a title="18th century" >18th century</a> by <a title="Leonhard Euler" >Leonhard Euler</a>, who was interested in the number of different ways of dividing a polygon into triangles. The sequence is named after <a title="Eugène Charles Catalan" >Eugène Charles Catalan</a>, who discovered the connection to parenthesized expressions. The counting trick for Dyck words was found by D. André in 1887.</p> <img src ="http://www.aygfsteel.com/zellux/aggbug/145952.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/zellux/" target="_blank">ZelluX</a> 2007-09-17 19:55 <a href="http://www.aygfsteel.com/zellux/archive/2007/09/17/145952.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>Functional Programming For The Rest of Ushttp://www.aygfsteel.com/zellux/archive/2007/08/24/139194.htmlZelluXZelluXFri, 24 Aug 2007 14:54:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/08/24/139194.htmlhttp://www.aygfsteel.com/zellux/comments/139194.htmlhttp://www.aygfsteel.com/zellux/archive/2007/08/24/139194.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/139194.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/139194.html阅读全文

ZelluX 2007-08-24 22:54 发表评论
]]>
L学习W记 - ?(1)http://www.aygfsteel.com/zellux/archive/2007/08/07/135088.htmlZelluXZelluXTue, 07 Aug 2007 14:31:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/08/07/135088.htmlhttp://www.aygfsteel.com/zellux/comments/135088.htmlhttp://www.aygfsteel.com/zellux/archive/2007/08/07/135088.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/135088.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/135088.html|换?br>若M的元素个CؓnQ记M的所有置换的集合CSnQ则不难得出Sn的元素个Cؓn个元素的排列敎ͼ?br>| Sn | = n!

2. Sn的一个把i1变到i2Qi2变到i3Q?#8230;…Qik-1变到ikQik变到i1Q而其余的元(如果q有Q不变的|换UCؓk?span style="color: red; font-weight: bold;">循环|换
?br>(1 2 3 4 5 6)  =  (1) = (2) = ... = (6)Q称为恒{置?br> 1 2 3 4 5 6

3.几个定理Q?br>1) 设fQgZ个不怺的@环置换,则fg = gf
2) L|换均可唯一地分解成不相交@环置换的乘积
q个定理可由构造法证得Q该证法同时也给Z分解为@环置换的乘积的方?br>3) L|换均可分解为对换的乘积Q不唯一Q,例如
(12)(345) = (12)(35)(34) = (12)(14)(41)(35)(34)

4. |换的奇偶?br>1) 设f ∈SnQ规定f的符号ؓ
Sgn f = ∏[ f(i) - f(j) ] / (i - j)
貌似是逆序Ҏ的奇偶性,奇ؓ-1Q偶?
2) Sgn(fg) = (Sgn f)(Sgn g)
3) n > 1ӞSn中奇|换与偶|换的个数相{,均ؓn! / 2
可通过分离一l对换积证得



ZelluX 2007-08-07 22:31 发表评论
]]>
L学习W记 - 基数Q势Q?/title><link>http://www.aygfsteel.com/zellux/archive/2007/07/28/133040.html</link><dc:creator>ZelluX</dc:creator><author>ZelluX</author><pubDate>Sat, 28 Jul 2007 11:20:00 GMT</pubDate><guid>http://www.aygfsteel.com/zellux/archive/2007/07/28/133040.html</guid><wfw:comment>http://www.aygfsteel.com/zellux/comments/133040.html</wfw:comment><comments>http://www.aygfsteel.com/zellux/archive/2007/07/28/133040.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/zellux/comments/commentRss/133040.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/zellux/services/trackbacks/133040.html</trackback:ping><description><![CDATA[<p>1. 设A, BZ个集合,若存在从A到B的双函敎ͼ则称A与B?strong style="COLOR: red">{势</strong>的,CؓA≈B<br>N*N ?N的一U证明:构造双函?n = 2<sup>a</sup> * (2b - 1)?br></p> <p>2. 设A, B, CZQ意的集合Q则<br>(1) A≈A<br>(2) 若A≈BQ则B≈A<br>(3) 若A≈B且B≈CQ则A≈C<br></p> <p>3. Cantor定理<br>(1) N不与R{势<br>(2) 设AZQ意的集合Q则A不与P(A){势<br></p> <p>4. 若一个集合A与某个自然数n{势Q则UA?strong style="COLOR: red">有穷集合</strong>Q否则称A?span style="COLOR: red"><strong>无穷集合</strong></span>?/p> <img src ="http://www.aygfsteel.com/zellux/aggbug/133040.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/zellux/" target="_blank">ZelluX</a> 2007-07-28 19:20 <a href="http://www.aygfsteel.com/zellux/archive/2007/07/28/133040.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>L学习W记 - 自然?(2)http://www.aygfsteel.com/zellux/archive/2007/07/28/132964.htmlZelluXZelluXSat, 28 Jul 2007 08:37:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/07/28/132964.htmlhttp://www.aygfsteel.com/zellux/comments/132964.htmlhttp://www.aygfsteel.com/zellux/archive/2007/07/28/132964.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/132964.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/132964.html1. 数学归纳法证明自然数的性质PQ?br>W一Q构?S = { n | n ∈N ?P(n) }
W二Q证明S是归U集

2. 设AZ个集合,如果A中Q何元素的元素也是A的元素,则称A?strong style="COLOR: red">传递集。每个自然数都是传递集?br>以下命题{hQ?br>(1) A是传递集
(2) ∪A 包含?A
(3) 对于L的y∈AQy包含于A
(4) A包含于P(A)
(5) P(A)Z递集

3. 设AZ个集合,UCA*A到A的函CؓA上的二元q算?br>?: N*N -> NQ且对于L的m, n ∈NQ?(<m, n>) = Am(n), Cm + nQ称+为N上的加法q算
?#183;: N*N -> NQ且对于L的m, n ∈NQ?#183;(<m, n>) = Mm(n)Q记作m·nQ称·为N上的乘法q算?br>

 



ZelluX 2007-07-28 16:37 发表评论
]]>
L学习W记 - 自然?(1)http://www.aygfsteel.com/zellux/archive/2007/07/27/132875.htmlZelluXZelluXFri, 27 Jul 2007 11:36:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/07/27/132875.htmlhttp://www.aygfsteel.com/zellux/comments/132875.htmlhttp://www.aygfsteel.com/zellux/archive/2007/07/27/132875.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/132875.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/132875.html1. Peano pȝ

Peanopȝ是满以下公讄有序三元l?lt;M, F, e>Q其中MZ个集合,F为M到M的函敎ͼe为首元素?条公设ؓQ?/p>

(1) e ∈M
(2) M在F下是闭?br>(3) e K?ranF Q暂时只扑ֈq个W号表示“不属?#8221; 囧)
(4) F是单的
(5) 如果M的子集A满 (e属于A) ?(A在F下是闭?Q则A=M
(5)UCؓ极小性公?br>

2. 设AZ个集合,U?A∪{A} 为A?strong style="COLOR: red">后Q记作A+, q称求集合的后?span style="COLOR: red">后q算?br>

3. 设AZ个集合,若A满Q?br>(1) Ø  ∈AQ?br>(2) 若对于一?a ∈AQ则 a+ ∈AQ?br>则称A?strong style="COLOR: red">归纳?/strong>?br>

4. 从归U集的定义可以看出,ØQ?#216;+, Ø++,... 是所有归U集的元素,于是可以它们定义成自然?/strong>?br>自然数是属于每个归纳集的集合Q将ØQ?#216;+, Ø++,...分别Cؓ0, 1, 2, ...
设D={v | v是归U集|Q称∩D为全体自然数集合Q记为N.
设N然数集合Q?#963;: N -> NQ且σ(n) = n+, ?lt;N, σ, Ø>是Peanopȝ?br>q个Peanopȝ的第(5)条公设提Z证明自然数性质的一U方法,?span style="COLOR: red">数学归纳?/strong>Q称此公设ؓ数学归纳法原?/strong>?/p>

ZelluX 2007-07-27 19:36 发表评论
]]>
L学习W记 - 序关p?/title><link>http://www.aygfsteel.com/zellux/archive/2007/07/25/132268.html</link><dc:creator>ZelluX</dc:creator><author>ZelluX</author><pubDate>Wed, 25 Jul 2007 04:26:00 GMT</pubDate><guid>http://www.aygfsteel.com/zellux/archive/2007/07/25/132268.html</guid><wfw:comment>http://www.aygfsteel.com/zellux/comments/132268.html</wfw:comment><comments>http://www.aygfsteel.com/zellux/archive/2007/07/25/132268.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/zellux/comments/commentRss/132268.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/zellux/services/trackbacks/132268.html</trackback:ping><description><![CDATA[各符L定义与上文中最q处的定义相同?br>1. 设R属于A*AQ若R是自反的、反对称的和传递的Q则UR是A上的偏序关系?partial order<br>2. UC个非I集合A及其A上的一个偏序关p?lt;=l成的有序二元组(a, <=)Z个偏序集。partially ordered set, or simply poset.<br>3. ?A, <=)Z个偏序集Q若对于一切x,y属于AQ如果x<=y或者y<=x成立Q则Ux与y是可比的?br>4. 若x与y是可比的Q且x<yQ即x<=y且x!=yQ,但不存在z属于AQ得x<z<yQ则Uy覆盖x?br>5. 哈斯图作法: Hasse diagram<br>(1) 省去关系图中每个点处的环?br>(2) 若y覆盖xQ则代表y的顶Ҏ在代表x的顶点之上,q连U,省去有向边的头?br>6. 若对于一切x,y属于AQx与y均可比,则称<=为A上的全序关系Q或U性关pRlinear order<br>7. 若R是反自反的和传递的Q则UR为A上的拟序关系Q常RC<?br>8. 最大元 最元 极大?极小?上界 下界 最上?最大下?br>其实q些词的区别和高C的很相近Q?#8220;最”针对自n集合的所有元素,“?#8221;针对自n集合的部分元素,“?#8221;指有一个更大的包含自n集合的参照系下的情况?br>9. U性关pM׃M两个元素均可比,因此哈斯图中可以表CZؓ一条直U,从而容易理解线性的由来。又UCؓ链,元素个数UCؓ铄长度?br>10. 良序关系Q拟全序?A, <)中Q何非I子集均有最元?br><br> <img src ="http://www.aygfsteel.com/zellux/aggbug/132268.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/zellux/" target="_blank">ZelluX</a> 2007-07-25 12:26 <a href="http://www.aygfsteel.com/zellux/archive/2007/07/25/132268.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>L学习W记 - 二元关系http://www.aygfsteel.com/zellux/archive/2007/07/25/132238.htmlZelluXZelluXWed, 25 Jul 2007 03:03:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/07/25/132238.htmlhttp://www.aygfsteel.com/zellux/comments/132238.htmlhttp://www.aygfsteel.com/zellux/archive/2007/07/25/132238.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/132238.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/132238.html(1) 自反 reflexive
对称 symmetric
传?transitive
(2) 其中Q设R属于A*AQA为非I集合)Q则r(R) = R与A上恒{关pȝqӞs(R) = R与R的逆的qӞ
t(R) = R q?R^2 q?R^3 q?..q?R^l?br>(3) rs(R) = sr(R)
rt(R) = tr(R)
st(R) 属于 ts(R)


2. {h关系和划?br>(1) 设R属于A*AQ若R是自反的、对U的和传递的Q则UR为A上的{h关系?br>(2) 令[x]R为x的关于R的等LQ在不引h؜乱时可简Cؓ[x]?br>(3) 以关于R的全体不同的{hcMؓ元素的集合称为A关于R的商集,CA/R?br>(4) 设A为非I集合,若存在A的一个子集族S满
a. S中不包含I集元素
b. 对于一切x,y属于SQ且x,y不相{,则x与y不相交的(disjoint)
c. S中所有集合的qؓA
则称S为A的一个划分,S中元素称为划分块?br>(5) 非空集合A上的{h关系与A的划分是一一对应的?br>(6) W二cStirling敎ͼ表示n个不同的球放入r个相同的盒子中的Ҏ敎ͼ可以׃列递归式计:
f(n, r) = r * f(n - 1, r) + f(n - 1, r - 1)
很容易理解的一个递归式,其中初始状态ؓ
f(n, 0) = 0, f(n, 1) = 1, f(n, 2) = 2^(n-1) - 1, f(n, n - 1) = C(n, 2), f(n, n) = 1
(7) A上等价关pȝ数量可以通过Stiring数求出,以A={a,b,c,d}Z
f(4,1) + f(4,2) + f(4,3) + f(4,4) = 15


ZelluX 2007-07-25 11:03 发表评论
]]>
一些数独技?Very Easy - Hard)http://www.aygfsteel.com/zellux/archive/2007/07/20/131435.htmlZelluXZelluXFri, 20 Jul 2007 03:59:00 GMThttp://www.aygfsteel.com/zellux/archive/2007/07/20/131435.htmlhttp://www.aygfsteel.com/zellux/comments/131435.htmlhttp://www.aygfsteel.com/zellux/archive/2007/07/20/131435.html#Feedback0http://www.aygfsteel.com/zellux/comments/commentRss/131435.htmlhttp://www.aygfsteel.com/zellux/services/trackbacks/131435.htmlfrom www.BrainBashers.com
1. Intersection 横断Q游戏一开始就使用的常见技巧?/p>

Sudoku Image  Sudoku Image

2. Forced Moves 排除所有其他可能性后唯一的答?br>

Sudoku Image  Sudoku Image

3. Pinned Squares
Intersection 的加强版Q根据更多的情况定某一个数字在该区域的唯一可能位置?br>Sudoku Image  Sudoku Image

4. Locked Sets

如图一R5C1和R6C1只能??Q由此可排除与他们有关的域中的其他格??的可能性,从而R6C2只能??/p>

Sudoku Image  Sudoku Image



ZelluX 2007-07-20 11:59 发表评论
]]>
վ֩ģ壺 | | | | ƽ| ̫ԭ| ˶| ˱| | ʼ| Ž| | Դ| | | Ϫ| | лͨ| ½| ״| | | | | Ͷ| | ̩| | | ¹| ¤| | | | | ͭɽ| | | | | |