posts - 403, comments - 310, trackbacks - 0, articles - 7
            BlogJava :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

           

          作者:晏渭川
          隨著Linux2.6的發布,由于2.6內核做了新的改動,各個設備的驅動程序在不同程度上要進行改寫。為了方便各位Linux愛好者我把自己整理的這分 文檔share出來。該文當列舉了2.6內核同以前版本的絕大多數變化,可惜的是由于時間和精力有限沒有詳細列出各個函數的用法。

          1、 使用新的入口
          必須包含 <linux/init.h>
          module_init(your_init_func);
          module_exit(your_exit_func);
          老版本:int init_module(void);
          void cleanup_module(voi);
          2.4中兩種都可以用,對如后面的入口函數不必要顯示包含任何頭文件。

          2、 GPL
          MODULE_LICENSE("Dual BSD/GPL");
          老版本:MODULE_LICENSE("GPL");

          3、 模塊參數
          必須顯式包含<linux/moduleparam.h>
          module_param(name, type, perm);
          module_param_named(name, value, type, perm);
          參數定義
          module_param_string(name, string, len, perm);
          module_param_array(name, type, num, perm);
          老版本:MODULE_PARM(variable,type);
          MODULE_PARM_DESC(variable,type);

          4、 模塊別名
          MODULE_ALIAS("alias-name");
          這是新增的,在老版本中需在/etc/modules.conf配置,現在在代碼中就可以實現。

          5、 模塊計數
          int try_module_get(&module);
          module_put();
          老版本:MOD_INC_USE_COUNT 和 MOD_DEC_USE_COUNT

          http://www.fsl.cs.sunysb.edu/~sean/parser.cgi?modules

          In 2.4 modules, the MOD_INC_USE_COUNT macro is used to prevent unloading of the module while there is an open file. The 2.6 kernel, however, knows not to unload a module that owns a character device that's currently open.
          However, this requires that the module be explicit in specifying ownership of character devices, using the THIS_MODULE macro.

          You also have to take out all calls to MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT.
                 
              static struct file_operations fops =
          {
                   .owner = THIS_MODULE,
                   .read = device_read,
                   .write = device_write,
                   .open = device_open,
                   .release = device_release
          }    
                 

          The 2.6 kernel considers modules that use the deprecated facility to be unsafe, and does not permit their unloading, even with rmmod -f.

          2.6,2.5的kbuild不需要到處加上MOD_INC_USE_COUNT來消除模塊卸載競爭(module unload race)

          6、 符號導出
          只有顯示的導出符號才能被其他模塊使用,默認不導出所有的符號,不必使用EXPORT_NO_SYMBOLS
          老板本:默認導出所有的符號,除非使用EXPORT_NO_SYMBOLS

          7、 內核版本檢查
          需要在多個文件中包含<linux/module.h>時,不必定義__NO_VERSION__
          老版本:在多個文件中包含<linux/module.h>時,除在主文件外的其他文件中必須定義__NO_VERSION__,防止版本重復定義。

          8、 設備號
          kdev_t被廢除不可用,新的dev_t拓展到了32位,12位主設備號,20位次設備號。
          unsigned int iminor(struct inode *inode);
          unsigned int imajor(struct inode *inode);
          老版本:8位主設備號,8位次設備號
          int MAJOR(kdev_t dev);
          int MINOR(kdev_t dev);

          9、 內存分配頭文件變更
          所有的內存分配函數包含在頭文件<linux/slab.h>,而原來的<linux/malloc.h>不存在
          老版本:內存分配函數包含在頭文件<linux/malloc.h>

          10、 結構體的初試化
          gcc開始采用ANSI C的struct結構體的初始化形式:
          static struct some_structure = {
          .field1 = value,
          .field2 = value,
          ..
          };
          老版本:非標準的初試化形式
          static struct some_structure = {
          field1: value,
          field2: value,
          ..
          };

          11、 用戶模式幫助器
          int call_usermodehelper(char *path, char **argv, char **envp, int wait);
          新增wait參數

          12、 request_module()
          request_module("foo-device-%d", number);
          老版本:
          char module_name[32];
          printf(module_name, "foo-device-%d", number);
          request_module(module_name);

          13、 dev_t引發的字符設備的變化
          1、取主次設備號為
          unsigned iminor(struct inode *inode);
          unsigned imajor(struct inode *inode);
          2、老的register_chrdev()用法沒變,保持向后兼容,但不能訪問設備號大于256的設備。
          3、新的接口為
          a)注冊字符設備范圍
          int register_chrdev_region(dev_t from, unsigned count, char *name);
          b)動態申請主設備號
          int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, char *name);
          看了這兩個函數郁悶吧^_^!怎么和file_operations結構聯系起來啊?別急!
          c)包含 <linux/cdev.h>,利用struct cdev和file_operations連接
          struct cdev *cdev_alloc(void);
          void cdev_init(struct cdev *cdev, struct file_operations *fops);
          int cdev_add(struct cdev *cdev, dev_t dev, unsigned count);
          (分別為,申請cdev結構,和fops連接,將設備加入到系統中!好復雜啊!)
          d)void cdev_del(struct cdev *cdev);
          只有在cdev_add執行成功才可運行。
          e)輔助函數
          kobject_put(&cdev->kobj);
          struct kobject *cdev_get(struct cdev *cdev);
          void cdev_put(struct cdev *cdev);
          這一部分變化和新增的/sys/dev有一定的關聯。

          14、 新增對/proc的訪問操作
          <linux/seq_file.h>
          以前的/proc中只能得到string, seq_file操作能得到如long等多種數據。
          相關函數:
          static struct seq_operations 必須實現這個類似file_operations得數據中得各個成員函數。
          seq_printf();
          int seq_putc(struct seq_file *m, char c);
          int seq_puts(struct seq_file *m, const char *s);
          int seq_escape(struct seq_file *m, const char *s, const char *esc);
          int seq_path(struct seq_file *m, struct vfsmount *mnt,
          struct dentry *dentry, char *esc);
          seq_open(file, &ct_seq_ops);
          等等

          15、 底層內存分配
          1、<linux/malloc.h>頭文件改為<linux/slab.h>
          2、分配標志GFP_BUFFER被取消,取而代之的是GFP_NOIO 和 GFP_NOFS
          3、新增__GFP_REPEAT,__GFP_NOFAIL,__GFP_NORETRY分配標志
          4、頁面分配函數alloc_pages(),get_free_page()被包含在<linux/gfp.h>中
          5、對NUMA系統新增了幾個函數:
          a) struct page *alloc_pages_node(int node_id, unsigned int gfp_mask, unsigned int order);
          b) void free_hot_page(struct page *page);
          c) void free_cold_page(struct page *page);
          6、 新增Memory pools
          <linux/mempool.h>
          mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data);
          void *mempool_alloc(mempool_t *pool, int gfp_mask);
          void mempool_free(void *element, mempool_t *pool);
          int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);

          16、 per-CPU變量
          get_cpu_var();
          put_cpu_var();
          void *alloc_percpu(type);
          void free_percpu(const void *);
          per_cpu_ptr(void *ptr, int cpu)
          get_cpu_ptr(ptr)
          put_cpu_ptr(ptr)
          老版本使用
          DEFINE_PER_CPU(type, name);
          EXPORT_PER_CPU_SYMBOL(name);
          EXPORT_PER_CPU_SYMBOL_GPL(name);
          DECLARE_PER_CPU(type, name);
          DEFINE_PER_CPU(int, mypcint);
          2.6內核采用了可剝奪得調度方式這些宏都不安全。

          17、 內核時間變化
          1、現在的各個平臺的HZ為
          Alpha: 1024/1200; ARM: 100/128/200/1000; CRIS: 100; i386: 1000; IA-64: 1024; M68K: 100; M68K-nommu: 50-1000; MIPS: 100/128/1000; MIPS64: 100; PA-RISC: 100/1000; PowerPC32: 100; PowerPC64: 1000; S/390: 100; SPARC32: 100; SPARC64: 100; SuperH: 100/1000; UML: 100; v850: 24-100; x86-64: 1000.
          2、由于HZ的變化,原來的jiffies計數器很快就溢出了,引入了新的計數器jiffies_64
          3、#include <linux/jiffies.h>
          u64 my_time = get_jiffies_64();
          4、新的時間結構增加了納秒成員變量
          struct timespec current_kernel_time(void);
          5、他的timer函數沒變,新增
          void add_timer_on(struct timer_list *timer, int cpu);
          6、新增納秒級延時函數
          ndelay();
          7、POSIX clocks 參考kernel/posix-timers.c

          18、 工作隊列(workqueue)
          1、任務隊列(task queue )接口函數都被取消,新增了workqueue接口函數
          struct workqueue_struct *create_workqueue(const char *name);
          DECLARE_WORK(name, void (*function)(void *), void *data);
          INIT_WORK(struct work_struct *work,
          void (*function)(void *), void *data);
          PREPARE_WORK(struct work_struct *work,
          void (*function)(void *), void *data);
          2、申明struct work_struct結構
          int queue_work(struct workqueue_struct *queue, struct work_struct *work);
          int queue_delayed_work(struct workqueue_struct *queue, struct work_struct *work,
          unsigned long delay);
          int cancel_delayed_work(struct work_struct *work);
          void flush_workqueue(struct workqueue_struct *queue);
          void destroy_workqueue(struct workqueue_struct *queue);
          int schedule_work(struct work_struct *work);
          int schedule_delayed_work(struct work_struct *work, unsigned long delay);

          19、 新增創建VFS的"libfs"
          libfs給創建一個新的文件系統提供了大量的API.
          主要是對struct file_system_type的實現。
          參考源代碼:
          drivers/hotplug/pci_hotplug_core.c
          drivers/usb/core/inode.c
          drivers/oprofile/oprofilefs.c
          fs/ramfs/inode.c
          fs/nfsd/nfsctl.c (simple_fill_super() example)

          20、 DMA的變化
          未變化的有:
          void *pci_alloc_consistent(struct pci_dev *dev, size_t size, dma_addr_t *dma_handle);
          void pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
          變化的有:
          1、 void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, int flag);
          void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
          2、列舉了映射方向:
          enum dma_data_direction {
          DMA_BIDIRECTIONAL = 0,
          DMA_TO_DEVICE = 1,
          DMA_FROM_DEVICE = 2,
          DMA_NONE = 3,
          };
          3、單映射
          dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction);
          void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction);
          4、頁面映射
          dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction);
          void dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction);
          5、有關scatter/gather的函數:
          int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
          void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, enum dma_data_direction direction);
          6、非一致性映射(Noncoherent DMA mappings)
          void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, int flag);
          void dma_sync_single_range(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size,
          enum dma_data_direction direction);
          void dma_free_noncoherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
          7、DAC (double address cycle)
          int pci_dac_set_dma_mask(struct pci_dev *dev, u64 mask);
          void pci_dac_dma_sync_single(struct pci_dev *dev, dma64_addr_t dma_addr, size_t len, int direction);

          21、 互斥
          新增seqlock主要用于:
          1、少量的數據保護
          2、數據比較簡單(沒有指針),并且使用頻率很高
          3、對不產生任何副作用的數據的訪問
          4、訪問時寫者不被餓死
          <linux/seqlock.h>
          初始化
          seqlock_t lock1 = SEQLOCK_UNLOCKED;
          或seqlock_t lock2; seqlock_init(&lock2);
          void write_seqlock(seqlock_t *sl);
          void write_sequnlock(seqlock_t *sl);
          int write_tryseqlock(seqlock_t *sl);
          void write_seqlock_irqsave(seqlock_t *sl, long flags);
          void write_sequnlock_irqrestore(seqlock_t *sl, long flags);
          void write_seqlock_irq(seqlock_t *sl);
          void write_sequnlock_irq(seqlock_t *sl);
          void write_seqlock_bh(seqlock_t *sl);
          void write_sequnlock_bh(seqlock_t *sl);
          unsigned int read_seqbegin(seqlock_t *sl);
          int read_seqretry(seqlock_t *sl, unsigned int iv);
          unsigned int read_seqbegin_irqsave(seqlock_t *sl, long flags);
          int read_seqretry_irqrestore(seqlock_t *sl, unsigned int iv, long flags);

          22、 內核可剝奪
          <linux/preempt.h>
          preempt_disable();
          preempt_enable_no_resched();
          preempt_enable_noresched();
          preempt_check_resched();

          23、 眠和喚醒
          1、原來的函數可用,新增下列函數:
          prepare_to_wait_exclusive();
          prepare_to_wait();
          2、等待隊列的變化
          typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int sync);
          void init_waitqueue_func_entry(wait_queue_t *queue, wait_queue_func_t func);

          24、 新增完成事件(completion events)
          <linux/completion.h>
          init_completion(&my_comp);
          void wait_for_completion(struct completion *comp);
          void complete(struct completion *comp);
          void complete_all(struct completion *comp);

          25、 RCU(Read-copy-update)
          rcu_read_lock();
          void call_rcu(struct rcu_head *head, void (*func)(void *arg),
          void *arg);

          26、 中斷處理
          1、中斷處理有返回值了。
          IRQ_RETVAL(handled);
          2、cli(), sti(), save_flags(), 和 restore_flags()不再有效,應該使用local_save
          _flags() 或local_irq_disable()。
          3、synchronize_irq()函數有改動
          4、新增int can_request_irq(unsigned int irq, unsigned long flags);
          5、 request_irq() 和free_irq() 從 <linux/sched.h>改到了 <linux/interrupt.h>

          27、 異步I/O(AIO)
          <linux/aio.h>
          ssize_t (*aio_read) (struct kiocb *iocb, char __user *buffer, size_t count, loff_t pos);
          ssize_t (*aio_write) (struct kiocb *iocb, const char __user *buffer, size_t count, loff_t pos);
          int (*aio_fsync) (struct kiocb *, int datasync);
          新增到了file_operation結構中。
          is_sync_kiocb(struct kiocb *iocb);
          int aio_complete(struct kiocb *iocb, long res, long res2);

          28、 網絡驅動
          1、struct net_device *alloc_netdev(int sizeof_priv, const char *name, void (*setup)(struct net_device *));
          struct net_device *alloc_etherdev(int sizeof_priv);
          2、新增NAPI(New API)
          void netif_rx_schedule(struct net_device *dev);
          void netif_rx_complete(struct net_device *dev);
          int netif_rx_ni(struct sk_buff *skb);
          (老版本為netif_rx())

          29、 USB驅動
          老版本struct usb_driver取消了,新的結構體為
          struct usb_class_driver {
          char *name;
          struct file_operations *fops;
          mode_t mode;
          int minor_base;
          };
          int usb_submit_urb(struct urb *urb, int mem_flags);
          int (*probe) (struct usb_interface *intf,
          const struct usb_device_id *id);

          30、 block I/O 層
          這一部分做的改動最大。不祥敘。

          31、 mmap()
          int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
          int io_remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
          struct page *(*nopage)(struct vm_area_struct *area, unsigned long address, int *type);
          int (*populate)(struct vm_area_struct *area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
          int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
          struct page *vmalloc_to_page(void *address);

          32、 零拷貝塊I/O(Zero-copy block I/O)
          struct bio *bio_map_user(struct block_device *bdev, unsigned long uaddr, unsigned int len, int write_to_vm);
          void bio_unmap_user(struct bio *bio, int write_to_vm);
          int get_user_pages(struct task_struct *task, struct mm_struct *mm, unsigned long start, int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);

          33、 高端內存操作kmaps
          void *kmap_atomic(struct page *page, enum km_type type);
          void kunmap_atomic(void *address, enum km_type type);
          struct page *kmap_atomic_to_page(void *address);
          老版本:kmap() 和 kunmap()。

          34、 驅動模型
          主要用于設備管理。
          1、 sysfs
          2、 Kobjects

          推薦文章:
          http:/www-900.ibm.com/developerWorks/cn/linux/kernel/l-kernel26/index.shtml
          http:/www-900.ibm.com/developerWorks/cn/linux/l-inside/index.shtml

          2.6里不需要再定義“__KERNEL__”和“MODULE”了。
          用下面的Makefile文件編譯:

          代碼:

              obj-m   := hello.o

              KDIR   := /lib/modules/$(shell uname -r)/build
              PWD      := $(shell pwd)
              default:
                        $(MAKE) -C $(KDIR) M=$(PWD) modules


          評論

          # 請求幫忙寫個linux2.6內核的模塊化的字符設備驅動程序  回復  更多評論   

          2009-05-26 09:56 by 晴天
          請求幫忙寫個linux2.6內核的模塊化的字符設備驅動程序

          我寫了個可以運行于linux2.4內核的但是不會改成可以運行在linux2.6內核上的

          請幫忙
          #include <linux/kernel.h>
          #include <linux/module.h>
          #include <linux/init.h>
          #include <linux/errno.h>
          #include <linux/sched.h>

          #define DEMO_MAJOR 125
          #define COMMAND1 1
          #define COMMAND2 2

          static int demo_init(void);
          static int demo_open(struct inode *inode,struct file *file);
          static int demo_close(struct inode *inode,struct file *file);
          static ssize_t demo_read(struct file *file,char *buf,size_t count,loff_t *offset);
          static int demo_ioctl(struct inode *inode,struct file *file,unsigned int cmd,unsigned long arg);
          static void demo_cleanup(void);

          int demo_param = 9;
          static int demo_initialized = 0;
          static volatile int demo_flag = 0;
          static struct file_operations demo_fops = {
          owner:THIS_MODULE,
          llseek:NULL,
          read:demo_read,
          write:NULL,
          ioctl:demo_ioctl,
          open:demo_open,
          release:demo_close,
          };

          static int demo_init(void)
          {
          int i;
          if(demo_initialized == 1)
          return 0;
          i = register_chrdev(DEMO_MAJOR,"demo_drv",&demo_fops);
          if(i<0)
          {
          printk(KERN_CRIT"DEMO:i=%d\n",i);
          return -EIO;
          }
          printk(KERN_CRIT"DEMO:demo_drv registerred successfully:)=\n");

          demo_initialized = 1;
          return 0;
          }

          static int demo_open(struct inode *inode,struct file *file)
          {
          if(demo_flag==1)
          {
          return -1;
          }
          printk(KERN_CRIT"DEMO:demo device open \n");
          MOD_INC_USE_COUNT;
          demo_flag = 1;
          return 0;
          }

          static int demo_close(struct inode *inode,struct file *file)
          {
          if(demo_flag==0)
          return 0;
          printk(KERN_CRIT "DEMO:demo device close\n");
          MOD_DEC_USE_COUNT;
          demo_flag = 0;
          return 0;
          }

          static ssize_t demo_read(struct file *file,char *buf,size_t count,loff_t *offset)
          {
          printk(KERN_CRIT "DEMO:demo is reading,demo_parm=%d\n",demo_param);
          return 0;
          }

          static int demo_ioctl(struct inode *inode,struct file *file,unsigned int cmd,unsigned long arg)
          {
          if(cmd==COMMAND1)
          {
          printk(KERN_CRIT "DEMO:set command COMMAND1\n");
          return 0;
          }
          if(cmd==COMMAND2)
          {
          printk(KERN_CRIT "DEMO:set command COMMAND2\n");
          return 0;
          }
          printk(KERN_CRIT "DEMO:set command WRONG\n");
          return 0;
          }

          static void demo_cleanup(void)
          {
          if(demo_initialized==1)
          {
          unregister_chrdev(DEMO_MAJOR,"demo_drv");
          demo_initialized = 0;
          printk(KERN_CRIT "DEMO:demo device is cleanup\n");
          }
          return;
          }

          #ifdef MODULE
          MODULE_AUTHOR("DEPART 901");
          MODULE_DESCRIPTION("DEMO driver");
          MODULE_PARM(demo_param,"i");
          MODULE_PARM_DESC(demo_param,"parameter send to driver");
          int init_module(void)
          {
          return demo_init();
          }
          void cleanup_module(void)
          {
          demo_cleanup();
          }
          #endif
          謝謝了
          主站蜘蛛池模板: 怀安县| 淳化县| 新民市| 皋兰县| 定州市| 嘉兴市| 祁阳县| 邓州市| 麻城市| 建德市| 年辖:市辖区| 镇平县| 广德县| 安图县| 深泽县| 日照市| 屯留县| 镇巴县| 大同县| 西畴县| 吉木萨尔县| 专栏| 临邑县| 邢台县| 孙吴县| 呈贡县| 台南市| 城步| 巴林左旗| 枣阳市| 玉山县| 西畴县| 建水县| 云浮市| 申扎县| 湖口县| 宁化县| 盐池县| 犍为县| 姜堰市| 伊宁市|