什么是RSA
RSA算法是第一個(gè)能同時(shí)用于加密和數(shù)字簽名的算法,也易于理解和操作。
RSA是被研究得最廣泛的公鑰算法,從提出到現(xiàn)在已近二十年,經(jīng)歷了各種攻擊的考驗(yàn),逐漸為人們接受,普遍認(rèn)為是目前最優(yōu)秀的公鑰方案之一。RSA的安全性依賴于大數(shù)的因子分解,但并沒(méi)有從理論上證明破譯RSA的難度與大數(shù)分解難度等價(jià)。即RSA的重大缺陷是無(wú)法從理論上把握它的保密性能如何,而且密碼學(xué)界多數(shù)人士?jī)A向于因子分解不是NPC問(wèn)題。
RSA的缺點(diǎn)主要有:A)產(chǎn)生密鑰很麻煩,受到素?cái)?shù)產(chǎn)生技術(shù)的限制,因而難以做到一次一密。B)分組長(zhǎng)度太大,為保證安全性,n 至少也要 600 bits以上,使運(yùn)算代價(jià)很高,尤其是速度較慢,較對(duì)稱密碼算法慢幾個(gè)數(shù)量級(jí);且隨著大數(shù)分解技術(shù)的發(fā)展,這個(gè)長(zhǎng)度還在增加,不利于數(shù)據(jù)格式的標(biāo)準(zhǔn)化。目前,SET(Secure Electronic Transaction)協(xié)議中要求CA采用2048比特長(zhǎng)的密鑰,其他實(shí)體使用1024比特的密鑰。
這種算法1978年就出現(xiàn)了,它是第一個(gè)既能用于數(shù)據(jù)加密也能用于數(shù)字簽名的算法。它易于理解和操作,也很流行。算法的名字以發(fā)明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。
RSA算法是一種非對(duì)稱密碼算法,所謂非對(duì)稱,就是指該算法需要一對(duì)密鑰,使用其中一個(gè)加密,則需要用另一個(gè)才能解密。
RSA的算法涉及三個(gè)參數(shù),n、e1、e2。
其中,n是兩個(gè)大質(zhì)數(shù)p、q的積,n的二進(jìn)制表示時(shí)所占用的位數(shù),就是所謂的密鑰長(zhǎng)度。
e1和e2是一對(duì)相關(guān)的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質(zhì);再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對(duì)。
RSA加解密的算法完全相同,設(shè)A為明文,B為密文,則:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互換使用,即:
A=B^e2 mod n;B=A^e1 mod n;
一、RSA 的安全性
RSA的安全性依賴于大數(shù)分解,但是否等同于大數(shù)分解一直未能得到理論上的證明,因?yàn)闆](méi)有證明破解 RSA就一定需要作大數(shù)分解。假設(shè)存在一種無(wú)須分解大數(shù)的算法,那它肯定可以修改成為大數(shù)分解算法。目前, RSA 的一些變種算法已被證明等價(jià)于大數(shù)分解。不管怎樣,分解n是最顯然的攻擊方法。現(xiàn)在,人們已能分解多個(gè)十進(jìn)制位的大素?cái)?shù)。因此,模數(shù)n 必須選大一些,因具體適用情況而定。
二、RSA的速度
由于進(jìn)行的都是大數(shù)計(jì)算,使得RSA最快的情況也比DES慢上倍,無(wú)論是軟件還是硬件實(shí)現(xiàn)。速度一直是RSA的缺陷。一般來(lái)說(shuō)只用于少量數(shù)據(jù)加密。
三、RSA的選擇密文攻擊
RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝( Blind),讓擁有私鑰的實(shí)體簽署。然后,經(jīng)過(guò)計(jì)算就可得到它所想要的信息。實(shí)際上,攻擊利用的都是同一個(gè)弱點(diǎn),即存在這樣一個(gè)事實(shí):乘冪保留了輸入的乘法結(jié)構(gòu):
( XM )^d = X^d *M^d mod n
前面已經(jīng)提到,這個(gè)固有的問(wèn)題來(lái)自于公鑰密碼系統(tǒng)的最有用的特征--每個(gè)人都能使用公鑰。但從算法上無(wú)法解決這一問(wèn)題,主要措施有兩條:一條是采用好的公鑰協(xié)議,保證工作過(guò)程中實(shí)體不對(duì)其他實(shí)體任意產(chǎn)生的信息解密,不對(duì)自己一無(wú)所知的信息簽名;另一條是決不對(duì)陌生人送來(lái)的隨機(jī)文檔簽名,簽名時(shí)首先使用One-Way HashFunction 對(duì)文檔作HASH處理,或
四、RSA的公共模數(shù)攻擊
若系統(tǒng)中共有一個(gè)模數(shù),只是不同的人擁有不同的e和d,系統(tǒng)將是危險(xiǎn)的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質(zhì),那末該信息無(wú)需私鑰就可得到恢復(fù)。設(shè)P為信息明文,兩個(gè)加密密鑰為e1和e2,公共模數(shù)是n,則:
C1 = P^e1 mod n
C2 = P^e2 mod n
密碼分析者知道n、e1、e2、C1和C2,就能得到P。
因?yàn)閑1和e2互質(zhì),故用Euclidean算法能找到r和s,滿足:
r * e1 + s * e2 = 1
假設(shè)r為負(fù)數(shù),需再用Euclidean算法計(jì)算C1^(-1),則
( C1^(-1) )^(-r) * C2^s = P mod n
另外,還有其它幾種利用公共模數(shù)攻擊的方法。總之,如果知道給定模數(shù)的一對(duì)e和d,一是有利于攻擊者分解模數(shù),一是有利于攻擊者計(jì)算出其它成對(duì)的e’和d’,而無(wú)需分解模數(shù)。解決辦法只有一個(gè),那就是不要共享模數(shù)n。
RSA的小指數(shù)攻擊。 有一種提高 RSA速度的建議是使公鑰e取較小的值,這樣會(huì)使加密變得易于實(shí)現(xiàn),速度有
所提高。但這樣作是不安全的,對(duì)付辦法就是e和d都取較大的值。
RSA算法是第一個(gè)能同時(shí)用于加密和數(shù)字簽名的算法,也易于理解和操作。RSA是被研究得最廣泛的公鑰算法,從提出到現(xiàn)在已近二十年,經(jīng)歷了各種攻擊的考驗(yàn),逐漸為人們接受,普遍認(rèn)為是目前最優(yōu)秀的公鑰方案之一。RSA的安全性依賴于大數(shù)的因子分解,但并沒(méi)有從理論上證明破譯RSA的難度與大數(shù)分解難度等價(jià)。即RSA的重大缺陷是無(wú)法從理論上把握它的保密性能如何,而且密碼學(xué)界多數(shù)人士?jī)A向于因子分解不是NPC問(wèn)題。 RSA的缺點(diǎn)主要有:A)產(chǎn)生密鑰很麻煩,受到素?cái)?shù)產(chǎn)生技術(shù)的限制,因而難以做到一次一密。B)分組長(zhǎng)度太大,為保證安全性,n 至少也要 600 bits 以上,使運(yùn)算代價(jià)很高,尤其是速度較慢,較對(duì)稱密碼算法慢幾個(gè)數(shù)量級(jí);且隨著大數(shù)分解技術(shù)的發(fā)展,這個(gè)長(zhǎng)度還在增加,不利于數(shù)據(jù)格式的標(biāo)準(zhǔn)化。目前,SET( Secure Electronic Transaction )協(xié)議中要求CA采用比特長(zhǎng)的密鑰,其他實(shí)體使用比特的密鑰。
RSA算法是第一個(gè)能同時(shí)用于加密和數(shù)字簽名的算法,也易于理解和操作。
RSA是被研究得最廣泛的公鑰算法,從提出到現(xiàn)在已近二十年,經(jīng)歷了各種攻擊的考驗(yàn),逐漸為人們接受,普遍認(rèn)為是目前最優(yōu)秀的公鑰方案之一。RSA的安全性依賴于大數(shù)的因子分解,但并沒(méi)有從理論上證明破譯RSA的難度與大數(shù)分解難度等價(jià)。即RSA的重大缺陷是無(wú)法從理論上把握它的保密性能如何,而且密碼學(xué)界多數(shù)人士?jī)A向于因子分解不是NPC問(wèn)題。
RSA的缺點(diǎn)主要有:A)產(chǎn)生密鑰很麻煩,受到素?cái)?shù)產(chǎn)生技術(shù)的限制,因而難以做到一次一密。B)分組長(zhǎng)度太大,為保證安全性,n 至少也要 600 bits以上,使運(yùn)算代價(jià)很高,尤其是速度較慢,較對(duì)稱密碼算法慢幾個(gè)數(shù)量級(jí);且隨著大數(shù)分解技術(shù)的發(fā)展,這個(gè)長(zhǎng)度還在增加,不利于數(shù)據(jù)格式的標(biāo)準(zhǔn)化。目前,SET(Secure Electronic Transaction)協(xié)議中要求CA采用2048比特長(zhǎng)的密鑰,其他實(shí)體使用1024比特的密鑰。
這種算法1978年就出現(xiàn)了,它是第一個(gè)既能用于數(shù)據(jù)加密也能用于數(shù)字簽名的算法。它易于理解和操作,也很流行。算法的名字以發(fā)明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。
RSA算法是一種非對(duì)稱密碼算法,所謂非對(duì)稱,就是指該算法需要一對(duì)密鑰,使用其中一個(gè)加密,則需要用另一個(gè)才能解密。
RSA的算法涉及三個(gè)參數(shù),n、e1、e2。
其中,n是兩個(gè)大質(zhì)數(shù)p、q的積,n的二進(jìn)制表示時(shí)所占用的位數(shù),就是所謂的密鑰長(zhǎng)度。
e1和e2是一對(duì)相關(guān)的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質(zhì);再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對(duì)。
RSA加解密的算法完全相同,設(shè)A為明文,B為密文,則:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互換使用,即:
A=B^e2 mod n;B=A^e1 mod n;
一、RSA 的安全性
RSA的安全性依賴于大數(shù)分解,但是否等同于大數(shù)分解一直未能得到理論上的證明,因?yàn)闆](méi)有證明破解 RSA就一定需要作大數(shù)分解。假設(shè)存在一種無(wú)須分解大數(shù)的算法,那它肯定可以修改成為大數(shù)分解算法。目前, RSA 的一些變種算法已被證明等價(jià)于大數(shù)分解。不管怎樣,分解n是最顯然的攻擊方法。現(xiàn)在,人們已能分解多個(gè)十進(jìn)制位的大素?cái)?shù)。因此,模數(shù)n 必須選大一些,因具體適用情況而定。
二、RSA的速度
由于進(jìn)行的都是大數(shù)計(jì)算,使得RSA最快的情況也比DES慢上倍,無(wú)論是軟件還是硬件實(shí)現(xiàn)。速度一直是RSA的缺陷。一般來(lái)說(shuō)只用于少量數(shù)據(jù)加密。
三、RSA的選擇密文攻擊
RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝( Blind),讓擁有私鑰的實(shí)體簽署。然后,經(jīng)過(guò)計(jì)算就可得到它所想要的信息。實(shí)際上,攻擊利用的都是同一個(gè)弱點(diǎn),即存在這樣一個(gè)事實(shí):乘冪保留了輸入的乘法結(jié)構(gòu):
( XM )^d = X^d *M^d mod n
前面已經(jīng)提到,這個(gè)固有的問(wèn)題來(lái)自于公鑰密碼系統(tǒng)的最有用的特征--每個(gè)人都能使用公鑰。但從算法上無(wú)法解決這一問(wèn)題,主要措施有兩條:一條是采用好的公鑰協(xié)議,保證工作過(guò)程中實(shí)體不對(duì)其他實(shí)體任意產(chǎn)生的信息解密,不對(duì)自己一無(wú)所知的信息簽名;另一條是決不對(duì)陌生人送來(lái)的隨機(jī)文檔簽名,簽名時(shí)首先使用One-Way HashFunction 對(duì)文檔作HASH處理,或
四、RSA的公共模數(shù)攻擊
若系統(tǒng)中共有一個(gè)模數(shù),只是不同的人擁有不同的e和d,系統(tǒng)將是危險(xiǎn)的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質(zhì),那末該信息無(wú)需私鑰就可得到恢復(fù)。設(shè)P為信息明文,兩個(gè)加密密鑰為e1和e2,公共模數(shù)是n,則:
C1 = P^e1 mod n
C2 = P^e2 mod n
密碼分析者知道n、e1、e2、C1和C2,就能得到P。
因?yàn)閑1和e2互質(zhì),故用Euclidean算法能找到r和s,滿足:
r * e1 + s * e2 = 1
假設(shè)r為負(fù)數(shù),需再用Euclidean算法計(jì)算C1^(-1),則
( C1^(-1) )^(-r) * C2^s = P mod n
另外,還有其它幾種利用公共模數(shù)攻擊的方法。總之,如果知道給定模數(shù)的一對(duì)e和d,一是有利于攻擊者分解模數(shù),一是有利于攻擊者計(jì)算出其它成對(duì)的e’和d’,而無(wú)需分解模數(shù)。解決辦法只有一個(gè),那就是不要共享模數(shù)n。
RSA的小指數(shù)攻擊。 有一種提高 RSA速度的建議是使公鑰e取較小的值,這樣會(huì)使加密變得易于實(shí)現(xiàn),速度有
所提高。但這樣作是不安全的,對(duì)付辦法就是e和d都取較大的值。
RSA算法是第一個(gè)能同時(shí)用于加密和數(shù)字簽名的算法,也易于理解和操作。RSA是被研究得最廣泛的公鑰算法,從提出到現(xiàn)在已近二十年,經(jīng)歷了各種攻擊的考驗(yàn),逐漸為人們接受,普遍認(rèn)為是目前最優(yōu)秀的公鑰方案之一。RSA的安全性依賴于大數(shù)的因子分解,但并沒(méi)有從理論上證明破譯RSA的難度與大數(shù)分解難度等價(jià)。即RSA的重大缺陷是無(wú)法從理論上把握它的保密性能如何,而且密碼學(xué)界多數(shù)人士?jī)A向于因子分解不是NPC問(wèn)題。 RSA的缺點(diǎn)主要有:A)產(chǎn)生密鑰很麻煩,受到素?cái)?shù)產(chǎn)生技術(shù)的限制,因而難以做到一次一密。B)分組長(zhǎng)度太大,為保證安全性,n 至少也要 600 bits 以上,使運(yùn)算代價(jià)很高,尤其是速度較慢,較對(duì)稱密碼算法慢幾個(gè)數(shù)量級(jí);且隨著大數(shù)分解技術(shù)的發(fā)展,這個(gè)長(zhǎng)度還在增加,不利于數(shù)據(jù)格式的標(biāo)準(zhǔn)化。目前,SET( Secure Electronic Transaction )協(xié)議中要求CA采用比特長(zhǎng)的密鑰,其他實(shí)體使用比特的密鑰。