J2me定點數數學類
這是我在開發中經常用到的類,為了模擬小數點運算以及實現j2me的Math沒有提供的數學運算。
1
/**
2
* 定點數數學類
3
* 模擬浮點數運算以及一些Math類沒有的數學運算
4
*
5
* @author Colonleado
6
*
7
*/
8
public abstract class CMathFP {
9
10
private static int _fbits = 24;
11
12
private static int _digits = 8;
13
14
public static long _one;
15
16
private static long _fmask = 0xffffffL;
17
18
private static long _dmul = 0x5f5e100L;
19
20
private static long _flt = 0L;
21
22
private static long _pi;
23
24
private static long e[];
25
26
public static long PI;
27
28
public static long E;
29
30
public static final long MAX_VALUE = 0x7fffffffffffffffL;
31
32
public static final long MIN_VALUE = 0x8000000000000001L;
33
34
public CMathFP() {
35
}
36
37
static {
38
_one = 0x1000000L;
39
_pi = 0x3243f6aL;
40
e = (new long[] { _one, 0x2b7e151L, 0x763992eL, 0x1415e5bfL,
41
0x3699205cL });
42
PI = _pi;
43
E = e[1];
44
}
45
46
public static int setPrecision(int i) {
47
if (i > 24 || i < 0)
48
return _digits;
49
_fbits = i;
50
_one = 1L << i;
51
_flt = 24 - i;
52
_digits = 0;
53
_dmul = 1L;
54
_fmask = _one - 1L;
55
PI = _pi >> (int) _flt;
56
E = e[1] >> (int) _flt;
57
for (long l = _one; l != 0L;) {
58
l /= 10L;
59
_digits++;
60
_dmul *= 10L;
61
}
62
63
return _digits;
64
}
65
66
public static int getPrecision() {
67
return _fbits;
68
}
69
70
71
public static long toLong(long l) {
72
l = round(l, 0);
73
return l >> _fbits;
74
}
75
76
77
public static long toFP(long l) {
78
return l << _fbits;
79
}
80
81
public static long convert(long l, int i) {
82
long l1 = l >= 0L ? 1L : -1L;
83
if (abs(i) < 25L)
84
if (_fbits < i)
85
l = l + l1 * (1L << (i - _fbits >> 1)) >> i - _fbits;
86
else
87
l <<= _fbits - i;
88
return l;
89
}
90
91
92
public static long toFP(String s) {
93
int i = 0;
94
if (s.charAt(0) == '-')
95
i = 1;
96
String s1 = "-1";
97
int j = s.indexOf('.');
98
if (j >= 0) {
99
for (s1 = s.substring(j + 1, s.length()); s1.length() < _digits; s1 = s1
100
+ "0")
101
;
102
if (s1.length() > _digits)
103
s1 = s1.substring(0, _digits);
104
} else {
105
j = s.length();
106
}
107
long l = 0L;
108
if (i != j)
109
l = Long.parseLong(s.substring(i, j));
110
long l1 = Long.parseLong(s1) + 1L;
111
long l2 = (l << _fbits) + (l1 << _fbits) / _dmul;
112
if (i == 1)
113
l2 = -l2;
114
return l2;
115
}
116
117
118
public static String toString(long l) {
119
boolean flag = false;
120
if (l < 0L) {
121
flag = true;
122
l = -l;
123
}
124
long l1 = l >> _fbits;
125
long l2 = _dmul * (l & _fmask) >> _fbits;
126
String s;
127
for (s = Long.toString(l2); s.length() < _digits; s = "0" + s)
128
;
129
return (flag ? "-" : "") + Long.toString(l1) + "." + s;
130
}
131
132
133
public static String toString(long l, int i) {
134
if (i > _digits)
135
i = _digits;
136
String s = toString(round(l, i));
137
return s.substring(0, (s.length() - _digits) + i);
138
}
139
140
public static long max(long l, long l1) {
141
return l >= l1 ? l : l1;
142
}
143
144
145
public static long min(long l, long l1) {
146
return l1 >= l ? l : l1;
147
}
148
149
150
public static long round(long l, int i) {
151
long l1 = 10L;
152
for (int j = 0; j < i; j++)
153
l1 *= 10L;
154
155
l1 = div(toFP(5L), toFP(l1));
156
if (l < 0L)
157
l1 = -l1;
158
return l + l1;
159
}
160
161
162
public static long mul(long l, long l1) {
163
boolean flag = false;
164
int i = _fbits;
165
long l2 = _fmask;
166
if ((l & l2) == 0L)
167
return (l >> i) * l1;
168
if ((l1 & l2) == 0L)
169
return l * (l1 >> i);
170
if (l < 0L && l1 > 0L || l > 0L && l1 < 0L)
171
flag = true;
172
if (l < 0L)
173
l = -l;
174
if (l1 < 0L)
175
l1 = -l1;
176
for (; max(l, l1) >= 1L << 63 - i; i--) {
177
l >>= 1;
178
l1 >>= 1;
179
l2 >>= 1;
180
}
181
182
long l3 = (l >> i) * (l1 >> i) << i;
183
long l4 = (l & l2) * (l1 & l2) >> i;
184
l4 += (l & ~l2) * (l1 & l2) >> i;
185
l3 = l3 + l4 + ((l & l2) * (l1 & ~l2) >> i) << _fbits - i;
186
if (l3 < 0L)
187
throw new ArithmeticException("Overflow");
188
else
189
return flag ? -l3 : l3;
190
}
191
192
public static long div(long l, long l1) {
193
boolean flag = false;
194
int i = _fbits;
195
if (l1 == _one)
196
return l;
197
if ((l1 & _fmask) == 0L)
198
return l / (l1 >> i);
199
if (l < 0L && l1 > 0L || l > 0L && l1 < 0L)
200
flag = true;
201
if (l < 0L)
202
l = -l;
203
if (l1 < 0L)
204
l1 = -l1;
205
for (; max(l, l1) >= 1L << 63 - i; i--) {
206
l >>= 1;
207
l1 >>= 1;
208
}
209
210
long l2 = (l << i) / l1 << _fbits - i;
211
return flag ? -l2 : l2;
212
}
213
214
public static long add(long l, long l1) {
215
return l + l1;
216
}
217
218
219
public static long sub(long l, long l1) {
220
return l - l1;
221
}
222
223
public static long abs(long l) {
224
if (l < 0L)
225
return -l;
226
else
227
return l;
228
}
229
230
231
public static int abs(int l) {
232
if (l < 0L)
233
return -l;
234
else
235
return l;
236
}
237
238
239
public static long sqrt(long l, int i) {
240
if (l < 0L)
241
throw new ArithmeticException("Bad Input");
242
if (l == 0L)
243
return 0L;
244
long l1 = l + _one >> 1;
245
for (int j = 0; j < i; j++)
246
l1 = l1 + div(l, l1) >> 1;
247
248
if (l1 < 0L)
249
throw new ArithmeticException("Overflow");
250
else
251
return l1;
252
}
253
254
255
public static long sqrt(long l) {
256
return sqrt(l, 24);
257
}
258
259
260
public static long sin(long l) {
261
long l1 = mul(l, div(toFP(180L), PI));
262
l1 %= toFP(360L);
263
if (l1 < 0L)
264
l1 = toFP(360L) + l1;
265
long l2 = l1;
266
if (l1 >= toFP(90L) && l1 < toFP(270L))
267
l2 = toFP(180L) - l1;
268
else if (l1 >= toFP(270L) && l1 < toFP(360L))
269
l2 = -(toFP(360L) - l1);
270
long l3 = l2 / 90L;
271
long l4 = mul(l3, l3);
272
long l5 = mul(mul(mul(mul(0xfffffffffffee21aL >> (int) _flt, l4)
273
+ (0x14594dL >> (int) _flt), l4)
274
- (0xa55b13L >> (int) _flt), l4)
275
+ (long) (0x1921f9c >> (int) _flt), l3);
276
return l5;
277
}
278
279
280
public static long asin(long l) {
281
if (abs(l) > _one) {
282
throw new ArithmeticException("Bad Input");
283
} else {
284
boolean flag = l < 0L;
285
l = abs(l);
286
long l1 = mul(mul(mul(mul(0x236cf >> (int) _flt, l)
287
- (long) (0x92748 >> (int) _flt), l)
288
+ (long) (0x15acb4 >> (int) _flt), l)
289
- (long) (0x36d0dd >> (int) _flt), l)
290
+ (long) (0x1921f27 >> (int) _flt);
291
long l2 = PI / 2L - mul(sqrt(_one - l), l1);
292
return flag ? -l2 : l2;
293
}
294
}
295
296
297
public static long cos(long l) {
298
return sin(PI / 2L - l);
299
}
300
301
302
public static long acos(long l) {
303
return PI / 2L - asin(l);
304
}
305
306
307
public static long tan(long l) {
308
return div(sin(l), cos(l));
309
}
310
311
312
public static long cot(long l) {
313
return div(cos(l), sin(l));
314
}
315
316
317
public static long atan(long l) {
318
return asin(div(l, sqrt(_one + mul(l, l))));
319
}
320
321
public static long exp(long l) {
322
if (l == 0L)
323
return _one;
324
boolean flag = l < 0L;
325
l = abs(l);
326
int i = (int) (l >> _fbits);
327
long l1 = _one;
328
for (int j = 0; j < i / 4; j++)
329
l1 = mul(l1, e[4] >> (int) _flt);
330
331
if (i % 4 > 0)
332
l1 = mul(l1, e[i % 4] >> (int) _flt);
333
l &= _fmask;
334
if (l > 0L) {
335
long l2 = _one;
336
long l3 = 0L;
337
long l4 = 1L;
338
for (int k = 0; k < 16; k++) {
339
l3 += l2 / l4;
340
l2 = mul(l2, l);
341
l4 *= k + 1;
342
if (l4 > l2 || l2 <= 0L || l4 <= 0L)
343
break;
344
}
345
346
l1 = mul(l1, l3);
347
}
348
if (flag)
349
l1 = div(_one, l1);
350
return l1;
351
}
352
353
354
public static long log(long l) {
355
if (l <= 0L)
356
throw new ArithmeticException("Bad Input");
357
long l1 = 0L;
358
// long l2 = 0L;
359
int i;
360
for (i = 0; l >= _one << 1; i++)
361
l >>= 1;
362
363
long l4 = (long) i * (long) (0xb17218 >> (int) _flt);
364
long l5 = 0L;
365
if (l < _one)
366
return -log(div(_one, l));
367
l -= _one;
368
for (int j = 1; j < 20; j++) {
369
long l3;
370
if (l1 == 0L)
371
l3 = l;
372
else
373
l3 = mul(l1, l);
374
if (l3 == 0L)
375
break;
376
l5 += ((j % 2 != 0 ? 1L : -1L) * l3) / (long) j;
377
l1 = l3;
378
}
379
380
return l4 + l5;
381
}
382
383
384
public static long pow(long l, long l1) {
385
boolean flag = l1 < 0L;
386
long l2 = _one;
387
l1 = abs(l1);
388
for (int i = (int) l1 >> _fbits; i-- > 0;)
389
l2 = mul(l2, l);
390
391
if (l2 < 0L)
392
throw new ArithmeticException("Overflow");
393
if (l != 0L)
394
l2 = mul(l2, exp(mul(log(l), l1 & _fmask)));
395
else
396
l2 = 0L;
397
if (flag)
398
return div(_one, l2);
399
else
400
return l2;
401
}
402
403
public static long asin2(long x, long y, long j) {
404
if (j <= 0L) {
405
j = sqrt(add(mul(x, x), mul(y, y)));
406
}
407
if (x > j)
408
throw new ArithmeticException("Bad Input");
409
long m = abs(div(x, j));
410
long n = mul(mul(mul(mul(0x236cf >> (int) _flt, m)
411
- (long) (0x92748 >> (int) _flt), m)
412
+ (long) (0x15acb4 >> (int) _flt), m)
413
- (long) (0x36d0dd >> (int) _flt), m)
414
+ (long) (0x1921f27 >> (int) _flt);
415
long k = PI / 2 - mul(sqrt(_one - m), n);
416
return getRadian(k, x, y);
417
}
418
419
public static long acos2(long x, long y, long j) {
420
if (j <= 0L) {
421
j = sqrt(add(mul(x, x), mul(y, y)));
422
}
423
if (x > j)
424
throw new ArithmeticException("Bad Input");
425
long m = abs(div(y, j));
426
long k = PI / 2 - asin(m);
427
return getRadian(k, x, y);
428
}
429
430
/*
431
* public static long atan2( long l, long l1 ) { long l2 = 0L; if ( l1 > 0L
432
* ) l2 = atan( div( l, l1 ) ); else if ( l1 < 0L ) { l2 = ( l1 >= 0L ? PI :
433
* -PI ) - atan( abs( div( l, l1 ) ) ); } else { if ( l1 == 0L && l == 0L )
434
* throw new ArithmeticException( "Bad Input" ); l2 = ( l >= 0L ? PI : -PI )
435
* / 2L; } return l2; }
436
*/
437
438
439
public static long atan2(long y, long x) {
440
if (x == 0L)
441
throw new ArithmeticException("Bad Input");
442
if (y == 0L) {
443
if (x < 0L)
444
return PI;
445
return 0L;
446
}
447
long k = atan(abs(div(y, x)));
448
return getRadian(k, y, x);
449
}
450
451
452
public static long getRadian(long k, long x, long y) {
453
if (x < 0L && y > 0L) {
454
return PI * 2 - k;
455
} else if (x < 0L && y < 0L) {
456
return PI + k;
457
} else if (x > 0L && y < 0L) {
458
return PI - k;
459
}
460
return k;
461
}
462
}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

posted on 2010-08-21 16:22 colonleado 閱讀(1343) 評論(0) 編輯 收藏