長連接網(wǎng)關(guān)技術(shù)專題(六):石墨文檔單機(jī)50萬WebSocket長連接架構(gòu)實踐
Posted on 2021-12-01 12:55 Jack Jiang 閱讀(187) 評論(0) 編輯 收藏本文由石墨文檔技術(shù)杜旻翔分享,原題“石墨文檔 Websocket 百萬長連接技術(shù)實踐”,有修訂。
1、引言
在石墨文檔的部分業(yè)務(wù)中,例如文檔分享、評論、幻燈片演示和文檔表格跟隨等場景,涉及到多客戶端數(shù)據(jù)實時同步和服務(wù)端批量數(shù)據(jù)在線推送的需求,一般的 HTTP 協(xié)議無法滿足服務(wù)端主動 Push 數(shù)據(jù)的場景,因此選擇采用 WebSocket 方案進(jìn)行業(yè)務(wù)開發(fā)。
隨著石墨文檔業(yè)務(wù)發(fā)展,目前日連接峰值已達(dá)百萬量級,日益增長的用戶連接數(shù)和不符合目前量級的架構(gòu)設(shè)計導(dǎo)致了內(nèi)存和 CPU 使用量急劇增長,因此我們考慮對長連接網(wǎng)關(guān)進(jìn)行重構(gòu)。
本文分享了石墨文檔長連接網(wǎng)關(guān)從1.0架構(gòu)演進(jìn)到2.0的過程,并總結(jié)了整個性能優(yōu)化的實踐過程。

學(xué)習(xí)交流:
- 即時通訊/推送技術(shù)開發(fā)交流5群:215477170 [推薦]
- 移動端IM開發(fā)入門文章:《新手入門一篇就夠:從零開發(fā)移動端IM》
- 開源IM框架源碼:https://github.com/JackJiang2011/MobileIMSDK
(本文同步發(fā)布于:http://www.52im.net/thread-3757-1-1.html)
2、專題目錄
本文是系列文章的第6篇,總目錄如下:
- 《長連接網(wǎng)關(guān)技術(shù)專題(一):京東京麥的生產(chǎn)級TCP網(wǎng)關(guān)技術(shù)實踐總結(jié)》
- 《長連接網(wǎng)關(guān)技術(shù)專題(二):知乎千萬級并發(fā)的高性能長連接網(wǎng)關(guān)技術(shù)實踐》
- 《長連接網(wǎng)關(guān)技術(shù)專題(三):手淘億級移動端接入層網(wǎng)關(guān)的技術(shù)演進(jìn)之路》
- 《長連接網(wǎng)關(guān)技術(shù)專題(四):愛奇藝WebSocket實時推送網(wǎng)關(guān)技術(shù)實踐》
- 《長連接網(wǎng)關(guān)技術(shù)專題(五):喜馬拉雅自研億級API網(wǎng)關(guān)技術(shù)實踐》
- 《長連接網(wǎng)關(guān)技術(shù)專題(六):石墨文檔單機(jī)50萬WebSocket長連接架構(gòu)實踐》(* 本文)
3、v1.0架構(gòu)面臨的問題
這套長連接網(wǎng)關(guān)系統(tǒng)的v1.0版是使用 Node.js 基于 Socket.IO 進(jìn)行修改開發(fā)的版本,很好的滿足了當(dāng)時用戶量級下的業(yè)務(wù)場景需求。
3.1 架構(gòu)介紹
1.0版架構(gòu)設(shè)計圖:

1.0版客戶端連接流程:
- 1)用戶通過 NGINX 連接網(wǎng)關(guān),該操作被業(yè)務(wù)服務(wù)感知;
- 2)業(yè)務(wù)服務(wù)感知到用戶連接后,會進(jìn)行相關(guān)用戶數(shù)據(jù)查詢,再將消息 Pub 到 Redis;
- 3)網(wǎng)關(guān)服務(wù)通過 Redis Sub 收到消息;
- 4)查詢網(wǎng)關(guān)集群中的用戶會話數(shù)據(jù),向客戶端進(jìn)行消息推送。
3.2 面臨的問題
雖然 1.0 版本的長連接網(wǎng)關(guān)在線上運行良好,但是不能很好的支持后續(xù)業(yè)務(wù)的擴(kuò)展。
并且有以下幾個問題需要解決:
- 1)資源消耗:Nginx 僅使用 TLS 解密,請求透傳,產(chǎn)生了大量的資源浪費,同時之前的 Node 網(wǎng)關(guān)性能不好,消耗大量的 CPU、內(nèi)存;
- 2)維護(hù)與觀測:未接入石墨的監(jiān)控體系,無法和現(xiàn)有監(jiān)控告警聯(lián)通,維護(hù)上存在一定的困難;
- 3)業(yè)務(wù)耦合問題:業(yè)務(wù)服務(wù)與網(wǎng)關(guān)功能被集成到了同一個服務(wù)中,無法針對業(yè)務(wù)部分性能損耗進(jìn)行針對性水平擴(kuò)容,為了解決性能問題,以及后續(xù)的模塊擴(kuò)展能力,都需要進(jìn)行服務(wù)解耦。
4、v2.0架構(gòu)演進(jìn)實踐
4.1 概述
長連接網(wǎng)關(guān)系統(tǒng)的v2.0版需要解決很多問題。
比如,石墨文檔內(nèi)部有很多組件(文檔、表格、幻燈片和表單等等),在 1.0 版本中組件對網(wǎng)關(guān)的業(yè)務(wù)調(diào)用可以通過Redis、Kafka 和 HTTP 接口,來源不可查,管控困難。
此外,從性能優(yōu)化的角度考慮也需要對原有服務(wù)進(jìn)行解耦合,將 1.0 版本網(wǎng)關(guān)拆分為網(wǎng)關(guān)功能部分和業(yè)務(wù)處理部分。
具體是:
- 1)網(wǎng)關(guān)功能部分為 WS-Gateway:集成用戶鑒權(quán)、TLS 證書驗證和 WebSocket 連接管理等;
- 2)業(yè)務(wù)處理部分為 WS-API:組件服務(wù)直接與該服務(wù)進(jìn)行 gRPC 通信。
另外還有:
- 1)可針對具體的模塊進(jìn)行針對性擴(kuò)容;
- 2)服務(wù)重構(gòu)加上 Nginx 移除,整體硬件消耗顯著降低;
- 3)服務(wù)整合到石墨監(jiān)控體系。
4.2 整體架構(gòu)
2.0版本架構(gòu)設(shè)計圖:

2.0版本客戶端連接流程:
- 1)客戶端與 WS-Gateway 服務(wù)通過握手流程建立 WebSocket 連接;
- 2)連接建立成功后,WS-Gateway 服務(wù)將會話進(jìn)行節(jié)點存儲,將連接信息映射關(guān)系緩存到 Redis 中,并通過 Kafka 向 WS-API 推送客戶端上線消息;
- 3)WS-API 通過 Kafka 接收客戶端上線消息及客戶端上行消息;
- 4)WS-API 服務(wù)預(yù)處理及組裝消息,包括從 Redis 獲取消息推送的必要數(shù)據(jù),并進(jìn)行完成消息推送的過濾邏輯,然后 Pub 消息到 Kafka;
- 5)WS-Gateway 通過 Sub Kafka 來獲取服務(wù)端需要返回的消息,逐個推送消息至客戶端。
4.3 握手流程
網(wǎng)絡(luò)狀態(tài)良好的情況下,完成如下圖所示步驟 1 到步驟 6 之后,直接進(jìn)入 WebSocket 流程;網(wǎng)絡(luò)環(huán)境較差的情況下,WebSocket 的通信模式會退化成 HTTP 方式,客戶端通過 POST 方式推送消息到服務(wù)端,再通過 GET 長輪詢的方式從讀取服務(wù)端返回數(shù)據(jù)。
客戶端初次請求服務(wù)端連接建立的握手流程:

流程說明如下:
- 1)Client 發(fā)送 GET 請求嘗試建立連接;
- 2)Server 返回相關(guān)連接數(shù)據(jù),sid 為本次連接產(chǎn)生的唯一 Socket ID,后續(xù)交互作為憑證:
- {"sid":"xxx","upgrades":["websocket"],"pingInterval":xxx,"pingTimeout":xxx}
- 3)Client 攜帶步驟 2 中的 sid 參數(shù)再次請求;
- 4)Server 返回 40,表示請求接收成功;
- 5)Client 發(fā)送 POST 請求確認(rèn)后期降級通路情況;
- 6)Server 返回 ok,此時第一階段握手流程完成;
- 7)嘗試發(fā)起 WebSocket 連接,首先進(jìn)行 2probe 和 3probe 的請求響應(yīng),確認(rèn)通信通道暢通后,即可進(jìn)行正常的 WebSocket 通信。
4.4 TLS 內(nèi)存消耗優(yōu)化
客戶端與服務(wù)端連接建立采用的 wss 協(xié)議,在 1.0 版本中 TLS 證書掛載在 Nginx 上,HTTPS 握手過程由 Nginx 完成。為了降低 Nginx 的機(jī)器成本,在 2.0 版本中我們將證書掛載到服務(wù)上。
通過分析服務(wù)內(nèi)存,如下圖所示,TLS 握手過程中消耗的內(nèi)存占了總內(nèi)存消耗的大概 30% 左右。

這個部分的內(nèi)存消耗無法避免,我們有兩個選擇:
- 1)采用七層負(fù)載均衡,在七層負(fù)載上進(jìn)行 TLS 證書掛載,將 TLS 握手過程移交給性能更好的工具完成;
- 2)優(yōu)化 Go 對 TLS 握手過程性能,在與業(yè)內(nèi)大佬曹春暉(曹大)的交流中了解到,他最近在 Go 官方庫提交的 PR,以及相關(guān)的性能測試數(shù)據(jù)。
4.5 Socket ID 設(shè)計
對每次連接必須產(chǎn)生一個唯一碼,如果出現(xiàn)重復(fù)會導(dǎo)致串號,消息混亂推送的問題。選擇SnowFlake算法作為唯一碼生成算法。
物理機(jī)場景中,對副本所在物理機(jī)進(jìn)行固定編號,即可保證每個副本上的服務(wù)產(chǎn)生的 Socket ID 是唯一值。
K8S 場景中,這種方案不可行,于是采用注冊下發(fā)的方式返回編號,WS-Gateway 所有副本啟動后向數(shù)據(jù)庫寫入服務(wù)的啟動信息,獲取副本編號,以此作為參數(shù)作為 SnowFlake 算法的副本編號進(jìn)行 Socket ID 生產(chǎn),服務(wù)重啟會繼承之前已有的副本編號,有新版本下發(fā)時會根據(jù)自增 ID 下發(fā)新的副本編號。
于此同時,Ws-Gateway 副本會向數(shù)據(jù)庫寫入心跳信息,以此作為網(wǎng)關(guān)服務(wù)本身的健康檢查依據(jù)。
4.6 集群會話管理方案:事件廣播
客戶端完成握手流程后,會話數(shù)據(jù)在當(dāng)前網(wǎng)關(guān)節(jié)點內(nèi)存存儲,部分可序列化數(shù)據(jù)存儲到 Redis,存儲結(jié)構(gòu)說明如下圖所示。

由客戶端觸發(fā)或組件服務(wù)觸發(fā)的消息推送,通過 Redis 存儲的數(shù)據(jù)結(jié)構(gòu),在 WS-API 服務(wù)查詢到返回消息體的目標(biāo)客戶端的 Socket ID,再由 WS-Gateway 服務(wù)進(jìn)行集群消費。如果 Socket ID 不在當(dāng)前節(jié)點,則需要進(jìn)行節(jié)點與會話關(guān)系的查詢,找到客端戶 Socket ID 實際對應(yīng)的 WS-Gateway 節(jié)點,通常有以下兩種方案(如下圖所示)。

在確定使用事件廣播方式進(jìn)行網(wǎng)關(guān)節(jié)點間的消息傳遞后,進(jìn)一步選擇使用哪種具體的消息中間件,列舉了三種待選的方案(如下圖所示)。

于是對 Redis 和其他 MQ 中間件進(jìn)行 100w 次的入隊和出隊操作,在測試過程中發(fā)現(xiàn)在數(shù)據(jù)小于 10K 時 Redis 性能表現(xiàn)十分優(yōu)秀。
進(jìn)一步結(jié)合實際情況:廣播內(nèi)容的數(shù)據(jù)量大小在 1K 左右,業(yè)務(wù)場景簡單固定,并且要兼容歷史業(yè)務(wù)邏輯,最后選擇了 Redis 進(jìn)行消息廣播。
后續(xù)還可以將 WS-API 與 WS-Gateway 兩兩互聯(lián),使用 gRPC stream 雙向流通信節(jié)省內(nèi)網(wǎng)流量。
4.7 心跳機(jī)制
會話在節(jié)點內(nèi)存與 Redis 中存儲后,客戶端需要通過心跳上報持續(xù)更新會話時間戳,客戶端按照服務(wù)端下發(fā)的周期進(jìn)行心跳上報,上報時間戳首先在內(nèi)存進(jìn)行更新,然后再通過另外的周期進(jìn)行 Redis 同步,避免大量客戶端同時進(jìn)行心跳上報對 Redis 產(chǎn)生壓力。
具體流程:
- 1)客戶端建立 WebSocket 連接成功后,服務(wù)端下發(fā)心跳上報參數(shù);
- 2)客戶端依據(jù)以上參數(shù)進(jìn)行心跳包傳輸,服務(wù)端收到心跳后會更新會話時間戳;
- 3)客戶端其他上行數(shù)據(jù)都會觸發(fā)對應(yīng)會話時間戳更新;
- 4)服務(wù)端定時清理超時會話,執(zhí)行主動關(guān)閉流程;
- 5)通過 Redis 更新的時間戳數(shù)據(jù)進(jìn)行 WebSocket 連接、用戶和文件之間的關(guān)系進(jìn)行清理。
會話數(shù)據(jù)內(nèi)存以及 Redis 緩存清理邏輯:
for{
select{
case<-t.C:
var now = time.Now().Unix()
var clients = make([]*Connection, 0)
dispatcher.clients.Range(func(_, v interface{}) bool{
client := v.(*Connection)
lastTs := atomic.LoadInt64(&client.LastMessageTS)
if now-lastTs > int64(expireTime) {
clients = append(clients, client)
} else{
dispatcher.clearRedisMapping(client.Id, client.Uid, lastTs, clearTimeout)
}
return true
})
for_, cli := rangeclients {
cli.WsClose()
}
}
}
在已有的兩級緩存刷新機(jī)制上,進(jìn)一步通過動態(tài)心跳上報頻率的方式降低心跳上報產(chǎn)生的服務(wù)端性能壓力,默認(rèn)場景中客戶端對服務(wù)端進(jìn)行間隔 1s 的心跳上報,假設(shè)目前單機(jī)承載了 50w 的連接數(shù),當(dāng)前的 QPS 為:QPS1 = 500000/1。
從服務(wù)端性能優(yōu)化的角度考慮,實現(xiàn)心跳正常情況下的動態(tài)間隔,每 x 次正常心跳上報,心跳間隔增加 a,增加上限為 y,動態(tài) QPS 最小值為:QPS2=500000/y。
極限情況下,心跳產(chǎn)生的 QPS 降低 y 倍。在單次心跳超時后服務(wù)端立刻將 a 值變?yōu)?1s 進(jìn)行重試。采用以上策略,在保證連接質(zhì)量的同時,降低心跳對服務(wù)端產(chǎn)生的性能損耗。
4.8 自定義Headers
使用 Kafka 自定義 Headers 的目的是避免網(wǎng)關(guān)層出現(xiàn)對消息體解碼而帶來的性能損耗。
客戶端 WebSocket 連接建立成功后,會進(jìn)行一系列的業(yè)務(wù)操作,我們選擇將 WS-Gateway 和 WS-API 之間的操作指令和必要的參數(shù)放到 Kafka 的 Headers 中,例如通過 X-XX-Operator 為廣播,再讀取 X-XX-Guid 文件編號,對該文件內(nèi)的所有用戶進(jìn)行消息推送。

在 Kafka Headers 中寫入了 trace id 和 時間戳,可以追中某條消息的完整消費鏈路以及各階段的時間消耗。

4.9 消息接收與發(fā)送
type Packet struct{
...
}
type Connect struct{
*websocket.Con
send chanPacket
}
func NewConnect(conn net.Conn) *Connect {
c := &Connect{
send: make(chanPacket, N),
}
goc.reader()
goc.writer()
return c
}
客戶端與服務(wù)端的消息交互第一版的寫法類似以上寫法。
對 Demo 進(jìn)行壓測,發(fā)現(xiàn)每個 WebSocket 連接都會占用 3 個 goroutine,每個 goroutine 都需要內(nèi)存棧,單機(jī)承載連十分有限。
主要受制于大量的內(nèi)存占用,而且大部分時間 c.writer() 是閑置狀態(tài),于是考慮,是否只啟用 2 個 goroutine 來完成交互。
type Packet struct{
...
}
type Connect struct{
*websocket.Conn
mux sync.RWMutex
}
func NewConnect(conn net.Conn) *Connect {
c := &Connect{
send: make(chanPacket, N),
}
goc.reader()
return c
}
func(c *Connect) Write(data []byte) (err error) {
c.mux.Lock()
deferc.mux.Unlock()
...
return nil
}
保留 c.reader() 的 goroutine,如果使用輪詢方式從緩沖區(qū)讀取數(shù)據(jù),可能會產(chǎn)生讀取延遲或者鎖的問題,c.writer() 操作調(diào)整為主動調(diào)用,不采用啟動 goroutine 持續(xù)監(jiān)聽,降低內(nèi)存消耗。
調(diào)研了 gev 和 gnet 等基于事件驅(qū)動的輕量級高性能網(wǎng)絡(luò)庫,實測發(fā)現(xiàn)在大量連接場景下可能產(chǎn)生的消息延遲的問題,所以沒有在生產(chǎn)環(huán)境下使用。
4.10 核心對象緩存
確定數(shù)據(jù)接收與發(fā)送邏輯后,網(wǎng)關(guān)部分的核心對象為 Connection 對象,圍繞 Connection 進(jìn)行了 run、read、write、close 等函數(shù)的開發(fā)。
使用 sync.pool 來緩存該對象,減輕 GC 壓力,創(chuàng)建連接時,通過對象資源池獲取 Connection 對象。
生命周期結(jié)束之后,重置 Connection 對象后 Put 回資源池。
在實際編碼中,建議封裝 GetConn()、PutConn() 函數(shù),收斂數(shù)據(jù)初始化、對象重置等操作。
var ConnectionPool = sync.Pool{
New: func() interface{} {
return &Connection{}
},
}
func GetConn() *Connection {
cli := ConnectionPool.Get().(*Connection)
return cli
}
func PutConn(cli *Connection) {
cli.Reset()
ConnectionPool.Put(cli) // 放回連接池
}
4.11 數(shù)據(jù)傳輸過程優(yōu)化
消息流轉(zhuǎn)過程中,需要考慮消息體的傳輸效率優(yōu)化,采用 MessagePack 對消息體進(jìn)行序列化,壓縮消息體大小。調(diào)整 MTU 值避免出現(xiàn)分包情況,定義 a 為探測包大小,通過如下指令,對目標(biāo)服務(wù) ip 進(jìn)行 MTU 極限值探測。
ping-s {a} {ip}
a = 1400 時,實際傳輸包大小為:1428。
其中 28 由 8(ICMP 回顯請求和回顯應(yīng)答報文格式)和 20(IP 首部)構(gòu)成。

如果 a 設(shè)置過大會導(dǎo)致應(yīng)答超時,在實際環(huán)境包大小超過該值時會出現(xiàn)分包的情況。

在調(diào)試合適的 MTU 值的同時通過 MessagePack 對消息體進(jìn)行序列號,進(jìn)一步壓縮數(shù)據(jù)包的大小,并減小 CPU 的消耗。
4.12 基礎(chǔ)設(shè)施支持
使用EGO框架進(jìn)行服務(wù)開發(fā):業(yè)務(wù)日志打印,異步日志輸出,動態(tài)日志級別調(diào)整等功能,方便線上問題排查提升日志打印效率;微服務(wù)監(jiān)控體系,CPU、P99、內(nèi)存、goroutine 等監(jiān)控。

客戶端 Redis 監(jiān)控:

客戶端 Kafka 監(jiān)控:

自定義監(jiān)控大盤:

5、檢查成果的時刻:性能壓測
5.1 壓測準(zhǔn)備
準(zhǔn)備的測試平臺有:
- 1)選擇一臺配置為 4 核 8G 的虛擬機(jī),作為服務(wù)機(jī),目標(biāo)承載 48w 連接;
- 2)選擇八臺配置為 4 核 8G 的虛擬機(jī),作為客戶機(jī),每臺客戶機(jī)開放 6w 個端口。
5.2 模擬場景一
用戶上線,50w 在線用戶。

單個 WS-Gateway 每秒建立連接數(shù)峰值為:1.6w 個/s,每個用戶占用內(nèi)存:47K。
5.3 模擬場景二
測試時間 15 分鐘,在線用戶 50w,每 5s 推送一條所有用戶,用戶有回執(zhí)。
推送內(nèi)容為:
42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]
測試經(jīng)過 5 分鐘后,服務(wù)異常重啟,重啟原因是內(nèi)存使用量到超過限制。
分析內(nèi)存超過限制的原因:

新增的廣播代碼用掉了 9.32% 的內(nèi)存:

接收用戶回執(zhí)消息的部分消耗了 10.38% 的內(nèi)存:

進(jìn)行測試規(guī)則調(diào)整,測試時間 15 分鐘,在線用戶 48w,每 5s 推送一條所有用戶,用戶有回執(zhí)。
推送內(nèi)容為:
42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

連接數(shù)建立峰值:1w 個/s,接收數(shù)據(jù)峰值:9.6w 條/s,發(fā)送數(shù)據(jù)峰值 9.6w 條/s。
5.4 模擬場景三
測試時間 15 分鐘,在線用戶 50w,每 5s 推送一條所有用戶,用戶無需回執(zhí)。
推送內(nèi)容為:
42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

連接數(shù)建立峰值:1.1w 個/s,發(fā)送數(shù)據(jù)峰值 10w 條/s,出內(nèi)存占用過高之外,其他沒有異常情況。
內(nèi)存消耗極高,分析火焰圖,大部分消耗在定時 5s 進(jìn)行廣播的操作上。

5.5 模擬場景四
測試時間 15 分鐘,在線用戶 50w,每 5s 推送一條所有用戶,用戶有回執(zhí)。每秒 4w 用戶上下線。
推送內(nèi)容為:
42["message",{"type":"xx","data":{"type":"xx","clients":[{"id":xx,"name":"xx","email":"xx@xx.xx","avatar":"ZgG5kEjCkT6mZla6.png","created_at":1623811084000,"name_pinyin":"","team_id":13,"team_role":"member","merged_into":0,"team_time":1623811084000,"mobile":"+xxxx","mobile_account":"","status":1,"has_password":true,"team":null,"membership":null,"is_seat":true,"team_role_enum":3,"register_time":1623811084000,"alias":"","type":"anoymous"}],"userCount":1,"from":"ws"}}]

連接數(shù)建立峰值:18570 個/s,接收數(shù)據(jù)峰值:329949 條/s,發(fā)送數(shù)據(jù)峰值:393542 條/s,未出現(xiàn)異常情況。
5.6 壓測總結(jié)
在16核32G內(nèi)存的硬件條件下:單機(jī) 50w 連接數(shù),進(jìn)行以上包括用戶上下線、消息回執(zhí)等四個場景的壓測,內(nèi)存和 CPU 消耗都符合預(yù)期,并且在較長時間的壓測下,服務(wù)也很穩(wěn)定。
測試的結(jié)果基本上是能滿足目前量級下的資源節(jié)約要求的,我們認(rèn)為完全可以在此基礎(chǔ)上繼續(xù)完善功能開發(fā)。
6、本文小結(jié)
面臨日益增加的用戶量,網(wǎng)關(guān)服務(wù)的重構(gòu)是勢在必行。
本次重構(gòu)主要是:
- 1)對網(wǎng)關(guān)服務(wù)與業(yè)務(wù)服務(wù)的解耦,移除對 Nginx 的依賴,讓整體架構(gòu)更加清晰;
- 2)從用戶建立連接到底層業(yè)務(wù)推送消息的整體流程分析,對其中這些流程進(jìn)行了具體的優(yōu)化。
2.0 版本的長連接網(wǎng)關(guān)有了更少的資源消耗,更低的單位用戶內(nèi)存損耗、更加完善的監(jiān)控報警體系,讓網(wǎng)關(guān)服務(wù)本身更加可靠。
以上優(yōu)化內(nèi)容主要是以下各個方面:
- 1)可降級的握手流程;
- 2)Socket ID 生產(chǎn);
- 3)客戶端心跳處理過程的優(yōu)化;
- 4)自定義 Headers 避免了消息解碼,強(qiáng)化了鏈路追蹤與監(jiān)控;
- 5)消息的接收與發(fā)送代碼結(jié)構(gòu)設(shè)計上的優(yōu)化;
- 6)對象資源池的使用,使用緩存降低 GC 頻率;
- 7)消息體的序列化壓縮;
- 8)接入服務(wù)觀測基礎(chǔ)設(shè)施,保證服務(wù)穩(wěn)定性。
在保證網(wǎng)關(guān)服務(wù)性能過關(guān)的同時,更進(jìn)一步的是收斂底層組件服務(wù)對網(wǎng)關(guān)業(yè)務(wù)調(diào)用的方式,從以前的 HTTP、Redis、Kafka 等方式,統(tǒng)一為 gRPC 調(diào)用,保證了來源可查可控,為后續(xù)業(yè)務(wù)接入打下了更好的基礎(chǔ)。
7、相關(guān)文章
[2] 搞懂現(xiàn)代Web端即時通訊技術(shù)一文就夠:WebSocket、socket.io、SSE
[3] 從游擊隊到正規(guī)軍(三):基于Go的馬蜂窩旅游網(wǎng)分布式IM系統(tǒng)技術(shù)實踐
[4] 12306搶票帶來的啟示:看我如何用Go實現(xiàn)百萬QPS的秒殺系統(tǒng)(含源碼)
[5] Go語言構(gòu)建千萬級在線的高并發(fā)消息推送系統(tǒng)實踐(來自360公司)
[6] 跟著源碼學(xué)IM(六):手把手教你用Go快速搭建高性能、可擴(kuò)展的IM系統(tǒng)
本文已同步發(fā)布于“即時通訊技術(shù)圈”公眾號。
同步發(fā)布鏈接是:http://www.52im.net/thread-3757-1-1.html
作者:Jack Jiang (點擊作者姓名進(jìn)入Github)
出處:http://www.52im.net/space-uid-1.html
交流:歡迎加入即時通訊開發(fā)交流群 215891622
討論:http://www.52im.net/
Jack Jiang同時是【原創(chuàng)Java
Swing外觀工程BeautyEye】和【輕量級移動端即時通訊框架MobileIMSDK】的作者,可前往下載交流。
本博文
歡迎轉(zhuǎn)載,轉(zhuǎn)載請注明出處(也可前往 我的52im.net 找到我)。