二分查找的基本思想是將n個元素分成大致相等的兩部分,去a[n/2]與x做比較,如果x=a[n/2],則找到x,算法中止;如果x<a[n/2],則只要在數組a的左半部分繼續搜索x,如果x>a[n/2],則只要在數組a的右半部搜索x.
時間復雜度無非就是while循環的次數!
總共有n個元素,
漸漸跟下去就是n,n/2,n/4,....n/2^k,其中k就是循環的次數
由于你n/2^k取整后>=1
即令n/2^k=1
可得k=log2n,(是以2為底,n的對數)
所以時間復雜度可以表示O()=O(logn)