??xml version="1.0" encoding="utf-8" standalone="yes"?>91精品在线影院,中文字幕久久久,久久久久一区二区三区四区http://www.aygfsteel.com/paulwong/category/55396.htmlzh-cnFri, 25 Apr 2025 17:15:08 GMTFri, 25 Apr 2025 17:15:08 GMT60球数据资源http://www.aygfsteel.com/paulwong/archive/2025/04/24/451613.htmlpaulwongpaulwongThu, 24 Apr 2025 06:56:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/04/24/451613.htmlhttp://www.aygfsteel.com/paulwong/comments/451613.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/04/24/451613.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451613.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451613.html球基础数据

球l计数据

球l计数据

球高阶数据

指数数据

球资料库数?/div>

Marz火星数据Q体Ԍ





paulwong 2025-04-24 14:56 发表评论
]]>大模型训l的几个阶段http://www.aygfsteel.com/paulwong/archive/2025/03/18/451600.htmlpaulwongpaulwongTue, 18 Mar 2025 05:14:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/03/18/451600.htmlhttp://www.aygfsteel.com/paulwong/comments/451600.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/03/18/451600.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451600.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451600.html

预训l?Pre-Trained)

单纯提供文本: {"text":"..."}
训练模型q一个文字开? 预测后面的文? 直到l束.
q种模型只会做完成文本的d

监督微调(Supervised Fine Turning)

Z使模型能完成Ҏ指o完成回答, 而不是随机生成回{?/div>
提供的文? {"instruction":"...", "output":"..."}

高效参数微调(Parameter Efficient Fine Turning)

只调整部分参? 具体实现Ҏ有LoRA

参?





paulwong 2025-03-18 13:14 发表评论
]]>大模型微调后的评估指?/title><link>http://www.aygfsteel.com/paulwong/archive/2025/03/12/451596.html</link><dc:creator>paulwong</dc:creator><author>paulwong</author><pubDate>Wed, 12 Mar 2025 02:08:00 GMT</pubDate><guid>http://www.aygfsteel.com/paulwong/archive/2025/03/12/451596.html</guid><wfw:comment>http://www.aygfsteel.com/paulwong/comments/451596.html</wfw:comment><comments>http://www.aygfsteel.com/paulwong/archive/2025/03/12/451596.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/paulwong/comments/commentRss/451596.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/paulwong/services/trackbacks/451596.html</trackback:ping><description><![CDATA[<p style="white-space: pre-wrap; padding: 0px; margin-right: 0px; margin-bottom: 16px; margin-left: 0px; box-sizing: border-box; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px; margin-top: 0px !important;">大模型微调后的评估指标是衡量模型性能的关键,通常Ҏdcd和具体需求选择不同的评估指标。以下是一些常见的评估指标及其适用场景Q?/p> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">1. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">分类d</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">准确率(AccuracyQ?/span>Q预正的h占L本的比例? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q类别分布均衡的d?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">_率(PrecisionQ?/span>Q预ؓ正类的样本中Q实际ؓ正类的比例? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q关注减假x(False PositiveQ的d?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">召回率(RecallQ?/span>Q实际ؓ正类的样本中Q预ؓ正类的比例? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q关注减假阴性(False NegativeQ的d?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">F1分数QF1 ScoreQ?/span>Q精率和召回率的调和^均倹{? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q类别不q或需要^衡精率和召回率的Q务?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">ROC-AUC</span>QROC曲线下的面积Q衡量模型区分正负类的能力? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q二分类dQ尤其是cd不^衡的情况?/li> </ul> </li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">2. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">回归d</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">均方误差QMSE, Mean Squared ErrorQ?/span>Q预g真实g差的qx的^均倹{? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q对误差较大的样本惩|更重的d?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">均方根误差(RMSE, Root Mean Squared ErrorQ?/span>QMSE的^Ҏ? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q与MSEcMQ但更接q原始数据尺度?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">q_l对误差QMAE, Mean Absolute ErrorQ?/span>Q预g真实g差的l对值的q_倹{? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q对异常g敏感的Q务?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">R²Q决定系敎ͼ</span>Q模型解释目标变量方差的比例? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q评估模型拟合优度?/li> </ul> </li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">3. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">生成d</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">BLEUQBilingual Evaluation UnderstudyQ?/span>Q衡量生成文本与参考文本的n-gram重叠E度? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q机器翻译、文本生成Q务?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">ROUGEQRecall-Oriented Understudy for Gisting EvaluationQ?/span>Q衡量生成文本与参考文本的重叠E度Q侧重于召回率? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q文本摘要、生成Q务?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">METEOR</span>Q综合考虑_率、召回率和词序的评估指标? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q机器翻译、文本生成Q务?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">PerplexityQ困惑度Q?/span>Q衡量模型预概率分布的不确定性? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q语a模型评估?/li> </ul> </li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">4. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">多标{Q?/span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">Hamming Loss</span>Q预错误的标签比例? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q多标签分类d?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">Jaccard Similarity</span>Q预标{与真实标签的交集与q之比? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q多标签分类d?/li> </ul> </li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">5. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">排序d</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">NDCGQNormalized Discounted Cumulative GainQ?/span>Q衡量排序结果的相关性? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q推荐系l、信息检索?/li> </ul> </li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">MAPQMean Average PrecisionQ?/span>Q^均精率的均倹{? <ul style="padding: 0px 0px 0px 2em; margin: 0px; box-sizing: border-box; list-style: outside;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;">适用场景Q信息检索、推荐系l?/li> </ul> </li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">6. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">其他指标</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">训练旉</span>Q模型微调所需的时间?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">推理速度</span>Q模型生成结果的速度?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">资源消?/span>Q模型运行所需的计资源(如GPU内存、CPU使用率)?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">鲁棒?/span>Q模型对噪声、异常值或Ҏh的抵抗能力?/li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">7. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">领域特定指标</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">d领域</span>Q敏感性(SensitivityQ、特异性(SpecificityQ、AUC-ROC?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">金融领域</span>Q收益曲Uѝ夏普比率(Sharpe RatioQ?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">计算?/span>QmAPQmean Average PrecisionQ、IoUQIntersection over UnionQ?/li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">8. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">人类评估</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">人工评分</span>Q通过人工评估生成l果的质量(如流畅性、相x、准性)?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">用户满意?/span>Q通过用户反馈评估模型的实际效果?/li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">9. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">模型Ҏ</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">基线Ҏ</span>Q与未微调的模型或基U模型进行性能Ҏ?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">消融实验</span>Q评估微调过E中不同lgQ如数据、超参数Q对性能的媄响?/li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <h3 style="padding: 0px; margin: 24px 0px 16px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600); line-height: 1.25; font-size: 1.25em; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif;">10. <span style="padding: 0px; margin: 0px; box-sizing: border-box; font-weight: var(--base-text-weight-semibold,600);">l合评估</span></h3> <ul style="padding: 0px 0px 0px 2em; margin: 0px 0px 16px; box-sizing: border-box; list-style: outside; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;"> <li style="padding: 0px; margin: 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">多指标综?/span>Q根据Q务需求,l合多个指标q行l合评估?/li> <li style="padding: 0px; margin: 0.25em 0px 0px; box-sizing: border-box;"><span style="padding: 0px; margin: 0px; box-sizing: border-box;">d特定指标</span>Q针对特定Q务设计自定义指标?/li> </ul> <hr style="padding: 0px; margin: 24px 0px; box-sizing: content-box; background-image: none; background-position: 0% 0%; background-size: auto; background-repeat: repeat; background-attachment: scroll; background-origin: padding-box; background-clip: border-box; height: 0.25em; border: 0px; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px;" /> <p style="white-space: pre-wrap; padding: 0px; margin-top: 0px; margin-right: 0px; margin-left: 0px; box-sizing: border-box; caret-color: #232d36; color: #232d36; font-family: "PingFang SC", system-ui, -apple-system, "Segoe UI", Rototo, Helvetica, Arial, sans-serif; font-size: 15px; margin-bottom: 0px !important;">在实际应用中Q选择合适的评估指标需要结合Q务目标、数据特点和业务需求,同时注意避免单一指标的局限性?/p> <img src ="http://www.aygfsteel.com/paulwong/aggbug/451596.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/paulwong/" target="_blank">paulwong</a> 2025-03-12 10:08 <a href="http://www.aygfsteel.com/paulwong/archive/2025/03/12/451596.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>LLM全栈框架完整分类清单Q预训练+微调+工具链)http://www.aygfsteel.com/paulwong/archive/2025/03/10/451594.htmlpaulwongpaulwongMon, 10 Mar 2025 03:29:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/03/10/451594.htmlhttp://www.aygfsteel.com/paulwong/comments/451594.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/03/10/451594.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451594.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451594.htmlhttps://blog.csdn.net/ViniJack/article/details/145789900





paulwong 2025-03-10 11:29 发表评论
]]>
ȝ问诊pȝ资源http://www.aygfsteel.com/paulwong/archive/2025/03/08/451593.htmlpaulwongpaulwongSat, 08 Mar 2025 12:52:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/03/08/451593.htmlhttp://www.aygfsteel.com/paulwong/comments/451593.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/03/08/451593.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451593.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451593.html
计算机毕业设计Python+Neo4j知识图谱ȝ问答pȝ 大模?br />

QABasedOnMedicaKnowledgeGraph

非结构文字抽取实体与关系的大模型

SiameseUniNLU通用自然语言理解模型

数据?/div>

各种已经训练好的模型













paulwong 2025-03-08 20:52 发表评论
]]>使用nlp提取非结构化数据中的信息http://www.aygfsteel.com/paulwong/archive/2025/03/08/451592.htmlpaulwongpaulwongSat, 08 Mar 2025 03:45:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/03/08/451592.htmlhttp://www.aygfsteel.com/paulwong/comments/451592.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/03/08/451592.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451592.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451592.html
如果要从非结构化的数据中, 如纯文本, 则要靠nlp, 要对文本理解? 才能提取相应的信?


文本l构?with SpaCy ȝ

使用openspg自动构徏ȝ知识图谱



paulwong 2025-03-08 11:45 发表评论
]]>
AI案例资源http://www.aygfsteel.com/paulwong/archive/2025/02/26/451587.htmlpaulwongpaulwongWed, 26 Feb 2025 08:01:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/02/26/451587.htmlhttp://www.aygfsteel.com/paulwong/comments/451587.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/02/26/451587.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451587.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451587.html从实跉|例介l大模型应用l验和思?/div>

LLaMA FactoryQ微调DeepSeek-R1-Distill-Qwen-7B模型实现新闻标题分类?

deepseek r1微调模型应用落地案例Q医疗法律,PatientSeekQ?/div>

文本转语音的模型ChatTTS体验极佳Q真丝滑和流畅,自定义也比较灉|

ȝNLP领域 评测/比赛Q数据集Q论文和预训l模型资源汇怅R?/div>



paulwong 2025-02-26 16:01 发表评论
]]>不用再找了,q是大模型最全的面试题库http://www.aygfsteel.com/paulwong/archive/2025/01/22/451567.htmlpaulwongpaulwongTue, 21 Jan 2025 23:42:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/01/22/451567.htmlhttp://www.aygfsteel.com/paulwong/comments/451567.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/01/22/451567.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451567.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451567.htmlhttps://blog.csdn.net/m0_59596990/article/details/135200833

paulwong 2025-01-22 07:42 发表评论
]]>
数据集资?/title><link>http://www.aygfsteel.com/paulwong/archive/2025/01/17/451561.html</link><dc:creator>paulwong</dc:creator><author>paulwong</author><pubDate>Fri, 17 Jan 2025 07:52:00 GMT</pubDate><guid>http://www.aygfsteel.com/paulwong/archive/2025/01/17/451561.html</guid><wfw:comment>http://www.aygfsteel.com/paulwong/comments/451561.html</wfw:comment><comments>http://www.aygfsteel.com/paulwong/archive/2025/01/17/451561.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/paulwong/comments/commentRss/451561.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/paulwong/services/trackbacks/451561.html</trackback:ping><description><![CDATA[@import url(http://www.aygfsteel.com/CuteSoft_Client/CuteEditor/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/css/cuteeditor.css); <div><a target="_blank">https://hyper.ai/cn/datasets</a></div> <div><br /> </div> <div><br /> </div><img src ="http://www.aygfsteel.com/paulwong/aggbug/451561.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/paulwong/" target="_blank">paulwong</a> 2025-01-17 15:52 <a href="http://www.aygfsteel.com/paulwong/archive/2025/01/17/451561.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>vllm资源http://www.aygfsteel.com/paulwong/archive/2025/01/17/451560.htmlpaulwongpaulwongFri, 17 Jan 2025 05:01:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/01/17/451560.htmlhttp://www.aygfsteel.com/paulwong/comments/451560.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/01/17/451560.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451560.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451560.html




paulwong 2025-01-17 13:01 发表评论
]]>AI应用场景http://www.aygfsteel.com/paulwong/archive/2025/01/17/451559.htmlpaulwongpaulwongFri, 17 Jan 2025 03:23:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/01/17/451559.htmlhttp://www.aygfsteel.com/paulwong/comments/451559.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/01/17/451559.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451559.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451559.html到底AI是虚的还是假? 在企业中有没实际落地场景, 以下取实际应用场?

生物公司
使用qwen2:7b训练l胞制备领域的数据集Q目标是
1.预测l胞收获?nbsp; 
2.细胞存zȝ?存活/M)
3.预测工艺是否成功
4.可以提前预测l胞的质量是否达标,以便及时采取措施q行调整
5.l胞培养q程中出现大量细胞死亡的情况Q模型可以根据实时数据和历史l验Q分析可能是培养温度失控、培d成分错误或受到污染等原因D的,q提供相应的排查?/div>

文体旅游
旅游pȝ:
提供目的Cl?br /> 旅行路线规划?br /> 酒店预订和景
Ҏ荐等服务?/div>

考试改卷
Z大模型,做一个判试卷的应用,能够判断主观题,比如阅读理解Q比如历Ԍ地理Q政治问{题?br /> 判卷准确率不能低于h工判卷准率?br /> 即一ơ考试Q一个班50份试P判断l果错误不超q?道题。判断效率高于或{于人工?br />
取过往同学试卷题目, 作答内容, 得分 作一波ocr出数? 一个科? 提取所有试卷内? 最后就是一个科目一个模? 提取的内Ҏ在文? csv, json,
Z“bert-base-chinese”q个模型, q行微调Z用模型即?  
让大模型成ؓ专业的判卯师

考试
用扣子打一个智能体Q实C同学员对掌握的知识进行测试,Ҏ试l果q行打分和二ơ出题测?/div>





paulwong 2025-01-17 11:23 发表评论
]]>搭徏llamafactory微调、评估、测试和量化环境http://www.aygfsteel.com/paulwong/archive/2025/01/16/451558.htmlpaulwongpaulwongThu, 16 Jan 2025 08:54:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/01/16/451558.htmlhttp://www.aygfsteel.com/paulwong/comments/451558.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/01/16/451558.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451558.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451558.html0. 配置环境变量
HF_ENDPOINT=https://hf-mirror.com
HF_HOME=/root/autodl-tmp/paul/tools/huggingface

1. 本机安装python 3.10, q设|Y件源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set global.index-url https://mirrors.huaweicloud.com/repository/pypi/simple

2. 安装miniconda

3. 新徏一个环? q激z?/div>
conda create -n quantization python=3.12

2. 本机安装pytorch2.5.1+cuda12.4
pip3 install torch torchvision torchaudio
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

3. clone llamafactory源码
git clone https://github.com/hiyouga/LLaMA-Factory

4. llamafactory本地安装依赖
pip install -e .
pip install -e .["vllm","gptq"]

5. 启动webui
llamafactory-cli webui

6. 在页面中填入相关参数q行操作


paulwong 2025-01-16 16:54 发表评论
]]>安装docker版的Nvidia container toolkithttp://www.aygfsteel.com/paulwong/archive/2025/01/13/451552.htmlpaulwongpaulwongMon, 13 Jan 2025 06:20:00 GMThttp://www.aygfsteel.com/paulwong/archive/2025/01/13/451552.htmlhttp://www.aygfsteel.com/paulwong/comments/451552.htmlhttp://www.aygfsteel.com/paulwong/archive/2025/01/13/451552.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451552.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451552.htmlhttps://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation

paulwong 2025-01-13 14:20 发表评论
]]>
AI入门http://www.aygfsteel.com/paulwong/archive/2024/10/19/451501.htmlpaulwongpaulwongSat, 19 Oct 2024 14:37:00 GMThttp://www.aygfsteel.com/paulwong/archive/2024/10/19/451501.htmlhttp://www.aygfsteel.com/paulwong/comments/451501.htmlhttp://www.aygfsteel.com/paulwong/archive/2024/10/19/451501.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451501.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451501.html 只能对已知数据进行操作,无法预测出新的数据的特征Q于是就有了机器学习?

 

机器学习Q给Z堆已知的Q有特征栏位的和l果栏位的数据,选定一个算法,如线性回归,逻辑回归{,其实是一条公式,q行学习Q其实就是运行一堆函敎ͼ比较l果Q得律,也就是确定了公式中参数的倹{当输入新的数据Ӟp预测出所需的结果,其实是把输入数据代入公式,出l果?/div>
机器学习只能做比较简单的dQ如预测下个月的销售数据,判断文字内容是正面还是反?分类)Q对于复杂的dQ如对话Q其实就是针对输入文字预靠q输出文字(回答)Q于是就有了深度学习?/div>

 

深度学习Q给Z堆数据,只需两个本栏位,如问题,{案{,选定一个算法,其实是经|络的类型,如卷U神l网l?CNN)Q@环神l网l?RNN)QTRANSFORMER经|络{,q行学习Q其实就是运行一堆函敎ͼ比较l果Q得律,也就是确定了公式中参数的倹{?img src ="http://www.aygfsteel.com/paulwong/aggbug/451501.html" width = "1" height = "1" />

paulwong 2024-10-19 22:37 发表评论
]]>微调llama3大模?2) - 使用ollama搭徏chatbothttp://www.aygfsteel.com/paulwong/archive/2024/07/08/451464.htmlpaulwongpaulwongMon, 08 Jul 2024 11:48:00 GMThttp://www.aygfsteel.com/paulwong/archive/2024/07/08/451464.htmlhttp://www.aygfsteel.com/paulwong/comments/451464.htmlhttp://www.aygfsteel.com/paulwong/archive/2024/07/08/451464.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451464.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451464.html 上篇已经合ƈZ训练好的大模型,现在要搭v一套CHATBOTQ得这套大模型能有一个WEBUI用v来?/div>

1.讄环境变量Qollama的模型保存\径,/etc/profile

export OLLAMA_MODELS=/root/autodl-tmp/models/ollama

2.克隆ollama代码

curl -fsSL https://ollama.com/install.sh | sh

3.启动ollama

ollama serve

4.建立ollama镜像的配|文ӞModelfile

# set the base model
FROM /root/.ollama/llamafactory-export/saves/llama3-8b/lora/docker-commnad-nlp/export

# set custom parameter values
PARAMETER temperature 
1
PARAMETER num_keep 
24
PARAMETER stop <|start_header_id|>
PARAMETER stop <|end_header_id|>
PARAMETER stop <|eot_id|>
PARAMETER stop <|reserved_special_token

# set the model template
TEMPLATE 
"""
{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>
"""

# set the system message
SYSTEM You are llama3 from Meta
, customized and hosted @ Paul Wong (http://paulwong88.tpddns.cn).

# set Chinese lora support
#ADAPTER /root/.ollama/models/lora/ggml-adapter-model.bin
建立镜像命oQcreate-ollama-image-docker-command-nlp.sh
BIN_PATH=$(cd `dirname $0`; pwd)
cd $BIN_PATH/
pwd
ollama create llama3-docker-commnad-nlp:paul -f Modelfile

5.q行大模?/h3>

llama3-docker-commnad-nlp:paul


paulwong 2024-07-08 19:48 发表评论
]]>
微调llama3大模?1) - 使用Llama Factory微调llama3大模?/title><link>http://www.aygfsteel.com/paulwong/archive/2024/07/08/451463.html</link><dc:creator>paulwong</dc:creator><author>paulwong</author><pubDate>Mon, 08 Jul 2024 10:44:00 GMT</pubDate><guid>http://www.aygfsteel.com/paulwong/archive/2024/07/08/451463.html</guid><wfw:comment>http://www.aygfsteel.com/paulwong/comments/451463.html</wfw:comment><comments>http://www.aygfsteel.com/paulwong/archive/2024/07/08/451463.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/paulwong/comments/commentRss/451463.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/paulwong/services/trackbacks/451463.html</trackback:ping><description><![CDATA[<div> 对于象META的开源大模型Q如llama3Q由于都是用通用数据q行预训l,Ҏ使用其模型的公司来说Q可能会不适用Q因大模型对公司的数据不熟悉Q因此引入微?Fine-Tunning)?/div><div></div><div>通过喂给大模型大量数据,1万条hQ得大模型也能对公司的数据熟悉Q进而用于各U对话场景?/div><div></div><div></div><div><h3>1.克隆q安装LLAMA FACTORY库,install-llamafactory.sh</h3></div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">BIN_PATH</span><span style="color: #000000; ">=</span><span style="color: #000000; ">$(cd `dirname $</span><span style="color: #000000; ">0</span><span style="color: #000000; ">`</span><span style="color: #008000; ">;</span><span style="color: #008000; "> pwd)</span><span style="color: #008000; "><br /></span><span style="color: #000000; ">cd $BIN_PATH/../<br />pwd<br />git clone --depth </span><span style="color: #000000; ">1</span><span style="color: #000000; "> https://github.com/hiyouga/LLaMA-Factory.git<br />cd LLaMA-Factory<br />pip install -e </span><span style="color: #000000; ">"</span><span style="color: #000000; ">.[torch,metrics,bitsandbytes,modelscope]</span><span style="color: #000000; ">"</span></div></div><div></div><div></div><div><h3>2.讄环境变量</h3></div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">export USE_MODELSCOPE_HUB</span><span style="color: #000000; ">=</span><span style="color: #000000; ">1</span><span style="color: #000000; "> #使用modelscop模型库,非huggingface?br />export CUDA_VISIBLE_DEVICES</span><span style="color: #000000; ">=</span><span style="color: #000000; ">0</span><span style="color: #000000; "> Q设|用GPU<br />export HF_ENDPOINT</span><span style="color: #000000; ">=</span><span style="color: #000000; ">https://hf-mirror.com Q设|huggingface的替代地址<br />export MODELSCOPE_CACHE</span><span style="color: #000000; ">=</span><span style="color: #000000; ">/root/autodl-tmp/models/modelscope Q设|modelscope中的大模型保存\?br />export LLAMAFACTORY_HOME=/root/autodl-tmp/LLaMA-Factory<br /></span></div></div><div></div><div></div><div><h3>3.准备数据</h3></div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#在data/dataset_info.json中加入此数据<br /><br /></span><span style="color: #000000; ">"</span><span style="color: #000000; ">docker_command_NL</span><span style="color: #000000; ">"</span><span style="color: #000000; ">: {<br />    </span><span style="color: #000000; ">"</span><span style="color: #000000; ">hf_hub_url</span><span style="color: #000000; ">"</span><span style="color: #000000; ">: </span><span style="color: #000000; ">"</span><span style="color: #000000; ">MattCoddity/dockerNLcommands</span><span style="color: #000000; ">"</span><span style="color: #000000; "><br />  }</span><span style="color: #000000; ">,</span></div></div><div></div><div>在data目录中加入训l数据,MattCoddity/dockerNLcommands.json</div><div>数据格式为:</div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #800000; font-weight: bold; ">[<br /></span><span style="color: #000000; ">  {<br />    </span><span style="color: #000000; ">"</span><span style="color: #000000; ">input</span><span style="color: #000000; ">"</span><span style="color: #000000; ">: </span><span style="color: #000000; ">"</span><span style="color: #000000; ">Give me a list of containers that have the Ubuntu image as their ancestor.</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; "><br />    </span><span style="color: #000000; ">"</span><span style="color: #000000; ">instruction</span><span style="color: #000000; ">"</span><span style="color: #000000; ">: </span><span style="color: #000000; ">"</span><span style="color: #000000; ">translate this sentence in docker command</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; "><br />    </span><span style="color: #000000; ">"</span><span style="color: #000000; ">output</span><span style="color: #000000; ">"</span><span style="color: #000000; ">: </span><span style="color: #000000; ">"</span><span style="color: #000000; ">docker ps --filter 'ancestor=ubuntu'</span><span style="color: #000000; ">"</span><span style="color: #000000; "><br />  }</span><span style="color: #000000; ">,</span><span style="color: #000000; "><br /><img src="http://www.aygfsteel.com/Images/dot.gif" alt="" /><br />]</span></div></div><div></div><div></div><div></div><div><h3>4.训练大模?/h3></div><div>训练的参数文Ӟllama3_lora_sft_docker_command.yaml</div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">### model<br />#md model id<br />model_name_or_path: LLM-Research/Meta-Llama-</span><span style="color: #000000; ">3</span><span style="color: #000000; ">-8B-Instruct<br />#huggingface model id<br />#model_name_or_path: meta-llama/Meta-Llama-</span><span style="color: #000000; ">3</span><span style="color: #000000; ">-8B-Instruct<br /><br />### method<br />stage: sft<br />do_train: true<br />finetuning_type: lora<br />lora_target: all<br /><br />### dataset<br />dataset: docker_command_NL<br />template: llama3<br />cutoff_len: </span><span style="color: #000000; ">1024</span><span style="color: #000000; "><br />max_samples: </span><span style="color: #000000; ">1000</span><span style="color: #000000; "><br />overwrite_cache: true<br />preprocessing_num_workers: </span><span style="color: #000000; ">16</span><span style="color: #000000; "><br /><br />### output<br />output_dir: /root/autodl-tmp/my-test/saves/llama3-8b/lora/sft/docker-commnad-nlp/sft<br />logging_steps: </span><span style="color: #000000; ">10</span><span style="color: #000000; "><br />save_steps: </span><span style="color: #000000; ">500</span><span style="color: #000000; "><br />plot_loss: true<br />overwrite_output_dir: true<br /><br />### train<br />per_device_train_batch_size: </span><span style="color: #000000; ">4</span><span style="color: #000000; "><br />gradient_accumulation_steps: </span><span style="color: #000000; ">8</span><span style="color: #000000; "><br />learning_rate: </span><span style="color: #000000; ">1.0e-4</span><span style="color: #000000; "><br />num_train_epochs: </span><span style="color: #000000; ">3.0</span><span style="color: #000000; "><br />lr_scheduler_type: cosine<br />warmup_ratio: </span><span style="color: #000000; ">0.1</span><span style="color: #000000; "><br />bf16: true<br />ddp_timeout: </span><span style="color: #000000; ">180000000</span><span style="color: #000000; "><br /><br />### eval<br />val_size: </span><span style="color: #000000; ">0.1</span><span style="color: #000000; "><br />per_device_eval_batch_size: </span><span style="color: #000000; ">1</span><span style="color: #000000; "><br />eval_strategy: steps<br />eval_steps: </span><span style="color: #000000; ">500</span></div></div><div></div><div>训练命oQlora-train-docker-command.sh</div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">BIN_PATH</span><span style="color: #000000; ">=</span><span style="color: #000000; ">$(cd `dirname $</span><span style="color: #000000; ">0</span><span style="color: #000000; ">`</span><span style="color: #008000; ">;</span><span style="color: #008000; "> pwd)</span><span style="color: #008000; "><br /></span><span style="color: #000000; ">cd $BIN_PATH/<br />pwd<br />cd $LLAMAFACTORY_HOME<br />pwd<br />llamafactory-cli train $BIN_PATH/conf/llama3_lora_sft_docker_command.yaml<br /></span></div></div><div></div><div></div><div>执行此命令即可开始训l大模型?/div><div></div><div><h3>5.合ƈ大模?/h3></div><div>合ƈ用的参数文gQllama3_lora_export_docker_command.yaml</div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">### model<br />#md model id<br />model_name_or_path: LLM-Research/Meta-Llama-</span><span style="color: #000000; ">3</span><span style="color: #000000; ">-8B-Instruct<br />#huggingface model id<br />#model_name_or_path: meta-llama/Meta-Llama-</span><span style="color: #000000; ">3</span><span style="color: #000000; ">-8B-Instruct<br /><br />adapter_name_or_path: /root/autodl-tmp/my-test/saves/llama3-8b/lora/docker-commnad-nlp/sft<br />template: llama3<br />export_dir: /root/autodl-tmp/my-test/saves/llama3-8b/lora/docker-commnad-nlp/export<br />finetuning_type: lora<br />export_size: </span><span style="color: #000000; ">2</span><span style="color: #000000; "><br />export_device: gpu<br />export_legacy_format: False</span></div></div><div></div><div>合ƈ命oQlora-export-docker-command.sh</div><div><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">BIN_PATH</span><span style="color: #000000; ">=</span><span style="color: #000000; ">$(cd `dirname $</span><span style="color: #000000; ">0</span><span style="color: #000000; ">`</span><span style="color: #008000; ">;</span><span style="color: #008000; "> pwd)</span><span style="color: #008000; "><br /></span><span style="color: #000000; ">cd $BIN_PATH/<br />pwd<br />llamafactory-cli export conf/llama3_lora_export_docker_command.yaml</span></div></div><div></div><div></div><div></div><div></div><div></div><img src ="http://www.aygfsteel.com/paulwong/aggbug/451463.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/paulwong/" target="_blank">paulwong</a> 2024-07-08 18:44 <a href="http://www.aygfsteel.com/paulwong/archive/2024/07/08/451463.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>部vdocker版的人工OPEN-WEBUI+OLLAMA+NGINXhttp://www.aygfsteel.com/paulwong/archive/2024/06/19/451450.htmlpaulwongpaulwongWed, 19 Jun 2024 14:23:00 GMThttp://www.aygfsteel.com/paulwong/archive/2024/06/19/451450.htmlhttp://www.aygfsteel.com/paulwong/comments/451450.htmlhttp://www.aygfsteel.com/paulwong/archive/2024/06/19/451450.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/451450.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/451450.html一键部|h工智能中的OPEN-WEBUI,OLLAMA, NGINXQ也对cMOPEN-AI的对话机器h
docker-compose.yaml
services:

  # ollama:
  #   deploy:
  #     resources:
  #       reservations:
  #         devices:
  #           - driver: nvidia
  #             count: all
  #             capabilities:
  #               - gpu  #使用GPU加?br />   #   volumes:
  #     - ollama-volume:/root/.ollama #配置OLLAMA的配|数据文件在宿主?br />   #     - /etc/localtime:/etc/localtime:ro
  #   container_name: ollama
  #   image: ollama/ollama
  #   restart: unless-stopped
  #   networks:
  #     - isolated #使用DOCKER的隔ȝl?br />   #     - internet

  vllm:
    container_name: vllm
    image: vllm/vllm-openai:latest
    # ipc: host
    volumes:
      - ${HUGGINGFACE_MODELS_DIR}:/models
      - /etc/localtime:/etc/localtime:ro
    command: >
      --model /models/models--unsloth--llama-3-8b-Instruct-lawdata
      --served-model-name llama-3-8b-Instruct-lawdata
      --gpu-memory-utilization 0.90
      --max_model_len 1072
      --quantization bitsandbytes
      --load_format bitsandbytes
    ports:
      - "8000:8000"
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities: [gpu]
    networks:
      - isolated #使用DOCKER的隔ȝl?br />
  # https://github.com/open-webui/open-webui
  open-webui: #全局l一的服务名
    volumes:
      - open-webui-volume:/app/backend/data #配置open-webui的配|数据文件在宿主?br />       - /etc/localtime:/etc/localtime:ro
    container_name: open-webui
    restart: unless-stopped
    image: ghcr.io/open-webui/open-webui:main
    # network_mode: host
    ports:
      - "3000:3000"
    environment:
      # - OLLAMA_BASE_URL=http://ollama:11434 #OPEN-WEBUI讉KOLLAMA的地址Q其实就是服务名代替IP
      - ENABLE_OLLAMA_API=False
      - OPENAI_API_BASE_URL=http://vllm:8000 /v1
      - /etc/localtime:/etc/localtime:ro
      - LOG_LEVEL=DEBUG
    depends_on:
      # - ollama
      - vllm
    networks:
      - isolated

  nginx-webui:
    volumes:
      - ${NGINX_DATA_DIR}/html:/usr/share/nginx/html:ro
      - ${NGINX_DATA_DIR}/conf/nginx.conf:/etc/nginx/nginx.conf:ro
      - ${NGINX_DATA_DIR}/conf/conf.d/default.conf:/etc/nginx/conf.d/default.conf:ro
      - ${NGINX_DATA_DIR}/conf/.htpasswd:/etc/nginx/.htpasswd:ro
      - /etc/localtime:/etc/localtime:ro
      - ${NGINX_DATA_DIR}/log/access.log:/var/log/nginx/access.log
      - ${NGINX_DATA_DIR}/log/error.log:/var/log/nginx/error.log
    container_name: nginx-webui
    ports:
      - "81:81"
    image: nginx:latest
    #image: quay.io/ricardbejarano/nginx
    depends_on:
      - open-webui
    restart: unless-stopped
    networks:
      - isolated
      - internet

volumes:
  ollama-volume:
    driver: local
    driver_opts:
      type: none
      o: bind
      device: ${OLLAMA_DATA_DIR}
  open-webui-volume:
    driver: local
    driver_opts:
      type: none
      o: bind
      device: ${OPEN_WEBUI_DATA_DIR}

networks:
  isolated:
    driver: bridge
    internal: true
  internet:
    driver: bridge

nginx.conf
user  nginx;
worker_processes  auto;

error_log  /var/log/nginx/error.log warn;
pid        /var/run/nginx.pid;

events {
    worker_connections  1024;
}

http {
    include       /etc/nginx/mime.types;
    default_type  application/octet-stream;

    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
                      '$status $body_bytes_sent "$http_referer" '
                      '"$http_user_agent" "$http_x_forwarded_for"';

    access_log  /var/log/nginx/access.log  main;

    sendfile        on;
    keepalive_timeout  65;

    include /etc/nginx/conf.d/*.conf;  # 加蝲 conf.d 目录下的配置文g
}

docker/docker-nginx/data/conf/conf.d/default.conf
# server {
#     listen       80;
#     server_name  example.com www.example.com;

#     root   /usr/share/nginx/html;
#     index  index.html index.htm;

#     location / {
#         try_files $uri $uri/ =404;
#     }

#     error_page   500 502 503 504  /50x.html;
#     location = /50x.html {
#         root   /usr/share/nginx/html;
#     }
# }
server {
    listen 81;
    server_name localhost;

    location / {
        proxy_pass http://open-webui:8080;
        # proxy_pass http://localhost:8080;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header X-Forwarded-Proto $scheme;
    }

    # 代理 WebSocket h
    location /ws/ {
        proxy_pass http://open-webui:8080;
        proxy_http_version 1.1;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "Upgrade";
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header X-Forwarded-Proto $scheme;
    }

    access_log /var/log/nginx/access.log;
    error_log /var/log/nginx/error.log;
}

00_varible.sh
#!/bin/bash

# 获取当前脚本的\?br /> # SCRIPT_PATH="$(realpath "$0")"
# echo "当前脚本的\径是: $SCRIPT_PATH"

# 获取当前脚本所在的目录
# SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
# echo "当前脚本所在的目录? $SCRIPT_DIR"
# cd $SCRIPT_DIR

# export HTTP_PROXY=http://192.168.0.102:7890
# export HTTPS_PROXY=https://192.168.0.102:7890


export DOCKER_ROOT_DIR=/home/paul/paulwong/work/workspaces/python-ai-project/docker
export NGINX_DATA_DIR=${DOCKER_ROOT_DIR}/docker-nginx/data
export OLLAMA_DATA_DIR=${DOCKER_ROOT_DIR}/docker-ollama/data
export OPEN_WEBUI_DATA_DIR=${DOCKER_ROOT_DIR}/docker-webui/data
export HUGGINGFACE_MODELS_DIR=/home/paul/.cache/huggingface/models

01_start-nginx-ollama-webui.sh
#!/bin/bash

# 获取当前脚本的\?br /> SCRIPT_PATH="$(realpath "$0")"
echo "当前脚本的\径是: $SCRIPT_PATH"

# 获取当前脚本所在的目录
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
echo "当前脚本所在的目录? $SCRIPT_DIR"
cd $SCRIPT_DIR

source ./00_varible.sh
docker compose -f configs/docker-compose.yaml down
docker compose -f configs/docker-compose.yaml up

02_restart-nginx-ollama-webui.sh
#!/bin/bash

# 获取当前脚本的\?br /> SCRIPT_PATH="$(realpath "$0")"
echo "当前脚本的\径是: $SCRIPT_PATH"

# 获取当前脚本所在的目录
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
echo "当前脚本所在的目录? $SCRIPT_DIR"
cd $SCRIPT_DIR

source ./00_varible.sh
docker compose -f configs/docker-compose.yaml restart

03_login_ollama.sh
#!/bin/bash

# 获取当前脚本的\?br /> SCRIPT_PATH="$(realpath "$0")"
echo "当前脚本的\径是: $SCRIPT_PATH"

# 获取当前脚本所在的目录
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
echo "当前脚本所在的目录? $SCRIPT_DIR"
cd $SCRIPT_DIR

source ./00_varible.sh
docker compose -f configs/docker-compose.yaml exec ollama /bin/bash
# echo ${DOCKER_ROOT_DIR}

04_restart_open_webui.sh
#!/bin/bash

# 获取当前脚本的\?br /> SCRIPT_PATH="$(realpath "$0")"
echo "当前脚本的\径是: $SCRIPT_PATH"

# 获取当前脚本所在的目录
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
echo "当前脚本所在的目录? $SCRIPT_DIR"
cd $SCRIPT_DIR

source ./00_varible.sh
docker compose -f configs/docker-compose.yaml restart open-webui
# echo ${DOCKER_ROOT_DIR}



paulwong 2024-06-19 22:23 发表评论
]]> վ֩ģ壺 ̨| ʡ| Դ| | ɽ| ɽ| | | Ȫ| ͩ| ױ| | ͷ| | | Ϲ| | | IJ| | ˮ| ²| ʼ| | ̩| | ̨| | °| | ʯ| ɽʡ| | | | ľ| | ƺ| | ݶ| ۷|