??xml version="1.0" encoding="utf-8" standalone="yes"?>日韩一区二区不卡,涩涩视频在线观看免费,久久久久久亚洲综合影院红桃http://www.aygfsteel.com/paulwong/category/53880.htmlzh-cnTue, 17 Feb 2015 16:06:19 GMTTue, 17 Feb 2015 16:06:19 GMT60开源分布式搜烦(ch)q_ELK+Redis+Syslog-ng实现日志实时搜烦(ch)http://www.aygfsteel.com/paulwong/archive/2015/02/17/422972.htmlpaulwongpaulwongTue, 17 Feb 2015 08:18:00 GMThttp://www.aygfsteel.com/paulwong/archive/2015/02/17/422972.htmlhttp://www.aygfsteel.com/paulwong/comments/422972.htmlhttp://www.aygfsteel.com/paulwong/archive/2015/02/17/422972.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/422972.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/422972.html阅读全文

paulwong 2015-02-17 16:18 发表评论
]]>
用Kibana和logstash快速搭建实时日志查询、收集与分析pȝhttp://www.aygfsteel.com/paulwong/archive/2014/09/30/418428.htmlpaulwongpaulwongTue, 30 Sep 2014 05:14:00 GMThttp://www.aygfsteel.com/paulwong/archive/2014/09/30/418428.htmlhttp://www.aygfsteel.com/paulwong/comments/418428.htmlhttp://www.aygfsteel.com/paulwong/archive/2014/09/30/418428.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/418428.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/418428.html阅读全文

paulwong 2014-09-30 13:14 发表评论
]]>
logstash最?jng)_?/title><link>http://www.aygfsteel.com/paulwong/archive/2014/09/30/418423.html</link><dc:creator>paulwong</dc:creator><author>paulwong</author><pubDate>Tue, 30 Sep 2014 03:24:00 GMT</pubDate><guid>http://www.aygfsteel.com/paulwong/archive/2014/09/30/418423.html</guid><wfw:comment>http://www.aygfsteel.com/paulwong/comments/418423.html</wfw:comment><comments>http://www.aygfsteel.com/paulwong/archive/2014/09/30/418423.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/paulwong/comments/commentRss/418423.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/paulwong/services/trackbacks/418423.html</trackback:ping><description><![CDATA[0. ?br /><br /><br />1. 基础知识<br />1.1. 介绍<br />1.2. 安装<br />1.3. Hello World<br />1.4. 配置语法<br /><br /><br />2. 输入插g(Input)<br />2.1. 标准输入(Stdin)<br />2.2. d文g(File)<br />2.3. d|络数据(TCP)<br />2.4. d Syslog 数据<br />2.5. d Redis 数据<br /><br /><br />3. ~码插g(Codec)<br />3.1. 采用 JSON ~码<br />3.2. 合ƈ多行数据(Multiline)<br /><br /><br />4. qo(h)器插?Filter)<br />4.1. Grok 正则捕获<br />4.2. 旉处理(Date)<br />4.3. 数据修改(Mutate)<br />4.4. GeoIP 查询归类<br />4.5. UserAgent 匚w归类<br />4.6. Key-Value 切分<br />4.7. 随心(j)所Ʋ的 Ruby 处理<br />4.8. 数值统?Metrics)<br /><br /><br />5. 输出插g(Output)<br />5.1. 标准输出(Stdout)<br />5.2. 保存成文?File)<br />5.3. 保存q?Elasticsearch<br />5.4. 输出?Redis<br />5.5. 输出?Statsd<br />5.6. 报警?Nagios<br />5.7. 发送邮?Email)<br />5.8. 调用命o(h)执行(Exec)<br /><br /><br />6. 未q入官方库的常用插g<br />6.1. Kafka<br />6.2. HDFS<br />6.3. Scribe<br /><br /><br />7. 深入?jin)?br />7.1. 自己写一个插?br />7.2. Z么用 JRuby? 能用 MRI q?br />7.3. 其他cM目<img src ="http://www.aygfsteel.com/paulwong/aggbug/418423.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/paulwong/" target="_blank">paulwong</a> 2014-09-30 11:24 <a href="http://www.aygfsteel.com/paulwong/archive/2014/09/30/418423.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>Logstash logo开源日志管?Logstashhttp://www.aygfsteel.com/paulwong/archive/2014/08/20/417134.htmlpaulwongpaulwongWed, 20 Aug 2014 01:22:00 GMThttp://www.aygfsteel.com/paulwong/archive/2014/08/20/417134.htmlhttp://www.aygfsteel.com/paulwong/comments/417134.htmlhttp://www.aygfsteel.com/paulwong/archive/2014/08/20/417134.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/417134.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/417134.html
logstash 是一个应用程序日志、事件的传输、处理、管理和搜烦(ch)的^台?br />你可以用它来l一对应用程序日志进行收集管理,提供 Web 接口用于查询和统计?br />
logstash screenshot

 



paulwong 2014-08-20 09:22 发表评论
]]>
NoSql存储日志数据之Spring+Logback+Hbase深度集成http://www.aygfsteel.com/paulwong/archive/2014/07/05/415490.htmlpaulwongpaulwongSat, 05 Jul 2014 15:14:00 GMThttp://www.aygfsteel.com/paulwong/archive/2014/07/05/415490.htmlhttp://www.aygfsteel.com/paulwong/comments/415490.htmlhttp://www.aygfsteel.com/paulwong/archive/2014/07/05/415490.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/415490.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/415490.htmlhttp://www.cnblogs.com/xguo/p/3298956.html

paulwong 2014-07-05 23:14 发表评论
]]>
Will be reviewing a new Apache Nutch book by Packthttp://www.aygfsteel.com/paulwong/archive/2014/01/28/409411.htmlpaulwongpaulwongTue, 28 Jan 2014 12:00:00 GMThttp://www.aygfsteel.com/paulwong/archive/2014/01/28/409411.htmlhttp://www.aygfsteel.com/paulwong/comments/409411.htmlhttp://www.aygfsteel.com/paulwong/archive/2014/01/28/409411.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/409411.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/409411.htmlhttp://www.packtpub.com/web-crawling-and-data-mining-with-apache-nutch/book

paulwong 2014-01-28 20:00 发表评论
]]>
ELASTICSEARCH资源http://www.aygfsteel.com/paulwong/archive/2013/09/12/404004.htmlpaulwongpaulwongThu, 12 Sep 2013 09:51:00 GMThttp://www.aygfsteel.com/paulwong/archive/2013/09/12/404004.htmlhttp://www.aygfsteel.com/paulwong/comments/404004.htmlhttp://www.aygfsteel.com/paulwong/archive/2013/09/12/404004.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/404004.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/404004.html http://www.elasticsearch.org/guide/reference/api/index_/


查询Q?br /> http://www.elasticsearch.org/blog/your-data-your-search/


JAVA APIQ注意端口是9300Q不?200
http://stackoverflow.com/questions/16670219/why-cant-i-connect-to-elasticsearch-through-java-api
http://www.elasticsearch.org/guide/reference/java-api/client/


书籍
http://fuxiaopang.gitbooks.io/learnelasticsearch/getting_started/README.html




paulwong 2013-09-12 17:51 发表评论
]]>
KAFKA资源http://www.aygfsteel.com/paulwong/archive/2013/09/11/403955.htmlpaulwongpaulwongWed, 11 Sep 2013 07:22:00 GMThttp://www.aygfsteel.com/paulwong/archive/2013/09/11/403955.htmlhttp://www.aygfsteel.com/paulwong/comments/403955.htmlhttp://www.aygfsteel.com/paulwong/archive/2013/09/11/403955.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/403955.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/403955.html http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/


Kafka部v与代码实?br /> http://shift-alt-ctrl.iteye.com/blog/1930791 

Flume-ng+Kafka+storm的学?fn)笔?br />http://blog.csdn.net/zxcvg/article/details/18600335


Storm应用pd?#8212;—集成Kafka(0.8版的KAFKA)
http://blog.csdn.net/xeseo/article/details/18615761

paulwong 2013-09-11 15:22 发表评论
]]>
STORM启动与部|TOPOLOGYhttp://www.aygfsteel.com/paulwong/archive/2013/09/11/403942.htmlpaulwongpaulwongWed, 11 Sep 2013 03:00:00 GMThttp://www.aygfsteel.com/paulwong/archive/2013/09/11/403942.htmlhttp://www.aygfsteel.com/paulwong/comments/403942.htmlhttp://www.aygfsteel.com/paulwong/archive/2013/09/11/403942.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/403942.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/403942.html
  • 启动ZOOPKEEPER
    zkServer.sh start
  • 启动NIMBUS
    storm nimbus &
  • 启动SUPERVISOR
    storm supervisor &
  • 启动UI
    storm ui &
  • 部vTOPOLOGY
    storm jar /opt/hadoop/loganalyst/storm-dependend/data/teststorm-1.0.jar teststorm.TopologyMain /opt/hadoop/loganalyst/storm-dependend/data/words.txt
  • 删除TOPOLOGY
    storm kill {toponame}
  • ȀzTOPOLOGY
    storm active {toponame}
  • 不激zTOPOLOGY
    storm deactive {toponame}
  • 列出所有TOPOLOGY
    storm list





  • paulwong 2013-09-11 11:00 发表评论
    ]]>
    STORM资源http://www.aygfsteel.com/paulwong/archive/2013/09/08/403826.htmlpaulwongpaulwongSun, 08 Sep 2013 11:59:00 GMThttp://www.aygfsteel.com/paulwong/archive/2013/09/08/403826.htmlhttp://www.aygfsteel.com/paulwong/comments/403826.htmlhttp://www.aygfsteel.com/paulwong/archive/2013/09/08/403826.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/403826.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/403826.htmlhttp://www.jansipke.nl/installing-a-storm-cluster-on-centos-hosts/
    http://www.cnblogs.com/kemaswill/archive/2012/10/24/2737833.html
    http://abentotoro.blog.sohu.com/197023262.html
    http://www.cnblogs.com/panfeng412/archive/2012/11/30/how-to-install-and-deploy-storm-cluster.html


    使用 Twitter Storm 处理实时的大数据
    http://www.ibm.com/developerworks/cn/opensource/os-twitterstorm/


    Storm数据?hu)模型的分析及(qing)讨?br />http://www.cnblogs.com/panfeng412/archive/2012/07/29/storm-stream-model-analysis-and-discussion.html
    http://www.cnblogs.com/panfeng412/tag/Storm/


    storm-kafka
    https://github.com/nathanmarz/storm-contrib/tree/master/storm-kafka


    使用Storm实现实时大数据分析!
    http://www.csdn.net/article/2012-12-24/2813117-storm-realtime-big-data-analysis


    storm-deploy-aws
    https://github.com/nathanmarz/storm-deploy/wiki


    !!!知乎|站上的Twitter Storm
    http://www.zhihu.com/topic/19673110


    storm-elastic-search
    https://github.com/hmsonline/storm-elastic-search


    storm-examples
    https://github.com/stormprocessor/storm-examples


    kafka-aws
    https://github.com/nathanmarz/kafka-deploy


    Next Gen Real-time Streaming with Storm-Kafka Integration
    http://blog.infochimps.com/2012/10/30/next-gen-real-time-streaming-storm-kafka-integration/


    flume+kafka+storm+mysql 数据?hu)?
    http://blog.csdn.net/baiyangfu/article/details/8096088
    http://blog.csdn.net/baiyangfu/article/category/1244640


    Kafka学习(fn)W记
    http://blog.csdn.net/baiyangfu/article/details/8096084


    STORM+KAFKA
    https://github.com/buildlackey/cep


    STORM+KETTLE
    https://github.com/buildlackey/kettle-storm



    paulwong 2013-09-08 19:59 发表评论
    ]]>
    STORM与HADOOP的比?/title><link>http://www.aygfsteel.com/paulwong/archive/2013/09/08/403824.html</link><dc:creator>paulwong</dc:creator><author>paulwong</author><pubDate>Sun, 08 Sep 2013 11:49:00 GMT</pubDate><guid>http://www.aygfsteel.com/paulwong/archive/2013/09/08/403824.html</guid><wfw:comment>http://www.aygfsteel.com/paulwong/comments/403824.html</wfw:comment><comments>http://www.aygfsteel.com/paulwong/archive/2013/09/08/403824.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/paulwong/comments/commentRss/403824.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/paulwong/services/trackbacks/403824.html</trackback:ping><description><![CDATA[对于一堆时d增长的数据,如果要统计,可以采取什么方法呢Q?br /><ol><li>{数据增长到一定程度的时候,跑一个统计程序进行统计。适用于实时性要求不高的场景?br />如将数据导到HDFSQ再q行一个MAP REDUCE JOB?br /></li><li>如果实时性要求高的,上面的方法就不行?jin)。因此就带来W二U方法?br />在数据每ơ增长一W的时候,p行统计JOBQ结果放到DB或搜索引擎的INDEX中?br />STORM是完成q种工作的?/li></ol><br />HADOOP与STORM比较<br /><ol><li>数据来源QHADOOP是HDFS上某个文件夹下的可能是成TB的数据,STORM是实时新增的某一W数?/li><li>处理q程QHADOOP是分MAP阶段到REDUCE阶段QSTORM是由用户定义处理程Q?br />程中可以包含多个步骤,每个步骤可以是数据源(SPOUT)或处理逻辑(BOLT)</li><li>是否l束QHADOOP最后是要结束的QSTORM是没有结束状态,到最后一步时Q就停在那,直到有新<br />数据q入时再从头开?/li><li>处理速度QHADOOP是以处理HDFS上大量数据ؓ(f)目的Q速度慢,STORM是只要处理新增的某一W数据即?br />可以做到很快?/li><li>适用场景QHADOOP是在要处理一Ҏ(gu)据时用的Q不讲究时效性,要处理就提交一个JOBQSTORM是要处理<br />某一新增数据时用的,要讲时效?br /></li><li>与MQҎ(gu)QHADOOP没有Ҏ(gu)性,STORM可以看作是有N个步骤,每个步骤处理完就向下一个MQ发送消息,<br />监听q个MQ的消费者l处?br /><br /></li></ol><img src ="http://www.aygfsteel.com/paulwong/aggbug/403824.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/paulwong/" target="_blank">paulwong</a> 2013-09-08 19:49 <a href="http://www.aygfsteel.com/paulwong/archive/2013/09/08/403824.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>Z?Storm ?Hadoop 快?是由哪几个方面决定的Q?/title><link>http://www.aygfsteel.com/paulwong/archive/2013/09/08/403822.html</link><dc:creator>paulwong</dc:creator><author>paulwong</author><pubDate>Sun, 08 Sep 2013 10:12:00 GMT</pubDate><guid>http://www.aygfsteel.com/paulwong/archive/2013/09/08/403822.html</guid><wfw:comment>http://www.aygfsteel.com/paulwong/comments/403822.html</wfw:comment><comments>http://www.aygfsteel.com/paulwong/archive/2013/09/08/403822.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://www.aygfsteel.com/paulwong/comments/commentRss/403822.html</wfw:commentRss><trackback:ping>http://www.aygfsteel.com/paulwong/services/trackbacks/403822.html</trackback:ping><description><![CDATA[首先要明白Storm和Hadoop的应用领域,注意加粗、标U的关键字?br /><br />Hadoop是基于Map/Reduce模型的,处理量数据的离U分析工兗?br />Storm是分布式的、实时数据流分析工具Q数据是源源不断产生的,例如Twitter的Timeline?br /><br />再回C说的速度问题Q只能说Storm更适用于实时数据流QMap/Reduce模型在实旉域很难有所发挥Q不能简单粗暴的说谁快谁慢?br /><br /><hr /><br />q里的快主要是指的时延?br /><br />storm的网l直传、内存计,其时延必然比hadoop的通过hdfs传输低得多;当计模型比较适合式Ӟstorm的流式处理,省去?jin)批处理的收集数据的旉Q因为storm是服务型的作业,也省M(jin)作业调度的时延。所以从时g上来看,storm要快于hadoop?br /><br />说一个典型的场景Q几千个日志生方生日志文Ӟ需要进行一些ETL操作存入一个数据库?br /><br />假设利用hadoopQ则需要先存入hdfsQ按每一分钟切一个文件的_度来算Q这个粒度已l极端的l了(jin)Q再的话hdfs上会(x)一堆小文gQ,hadoop开始计时Q?分钟已经q去?jin),然后再开始调度Q务又׃(jin)一分钟Q然后作业运行v来,假设机器特别多,几钞钟就完?jin),然后写数据库假设也花了(jin)很的旉Q这P从数据生到最后可以用已l过M(jin)臛_两分多钟?br /><br />而流式计则是数据生时Q则有一个程序去一直监控日志的产生Q生一行就通过一个传输系l发l流式计系l,然后式计算pȝ直接处理Q处理完之后直接写入数据库,每条数据从生到写入数据库,在资源充x(chng)可以在毫U别完成?br /><br /><br />当然Q跑一个大文g的wordcountQ本来就是一个批处理计算的模型,你非要把它放到storm上进行流式的处理Q然后又非要让等所有已有数据处理完才让storm输出l果Q这时候,你再把它和hadoop比较快慢Q这Ӟ其实比较的不是时Ӟ而是比较的吞吐了(jin)?br /><br /><hr /><br />Hadoop M/RZHDFSQ需要切分输入数据、生中间数据文件、排序、数据压~、多份复制等Q效率较低?br /><br />Storm ZZeroMQq个高性能的消息通讯库,不持久化数据?img src ="http://www.aygfsteel.com/paulwong/aggbug/403822.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://www.aygfsteel.com/paulwong/" target="_blank">paulwong</a> 2013-09-08 18:12 <a href="http://www.aygfsteel.com/paulwong/archive/2013/09/08/403822.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>linkedin高吞吐量分布式消息系lkafka使用手记http://www.aygfsteel.com/paulwong/archive/2013/09/08/403821.htmlpaulwongpaulwongSun, 08 Sep 2013 09:32:00 GMThttp://www.aygfsteel.com/paulwong/archive/2013/09/08/403821.htmlhttp://www.aygfsteel.com/paulwong/comments/403821.htmlhttp://www.aygfsteel.com/paulwong/archive/2013/09/08/403821.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/403821.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/403821.html
    通过O(1)的磁盘数据结构提供消息的持久化,q种l构对于即CTB的消息存储也能够保持长时间的E_性能?br />高吞吐量Q即使是非常普通的gkafka也可以支持每U数十万的消息?br />支持通过kafka服务器和消费机集来分区消息?br />支持Hadoopq行数据加蝲?br />
    设计侧重高吞吐量Q用于好友动态,相关性统计,排行l计Q访问频率控Ӟ批处理等pȝ。大部分的消息中间g能够处理实时性要求高的消?数据Q但是对于队列中大量未处理的消息/数据在持久性方面比较弱?br />
    kakfa的consumer使用拉的方式工作?br />

    安装kafka
    下蝲Qhttp://people.apache.org/~nehanarkhede/kafka-0.7.0-incubating/kafka-0.7.0-incubating-src.tar.gz

    > tar xzf kafka-.tgz
    > cd kafka-
    > ./sbt update
    > ./sbt package
    启动zkserver:
    bin/zookeeper-server-start.sh config/zookeeper.properties
    启动server:
    bin/kafka-server-start.sh config/server.properties
    是q么单?br />

    使用kafka
    import java.util.Arrays;  
    import java.util.List;  
    import java.util.Properties;  
    import kafka.javaapi.producer.SyncProducer;  
    import kafka.javaapi.message.ByteBufferMessageSet;  
    import kafka.message.Message;  
    import kafka.producer.SyncProducerConfig;  
      
      
      
    Properties props = new Properties();  
    props.put(“zk.connect”, “127.0.0.1:2181”);  
    props.put("serializer.class", "kafka.serializer.StringEncoder");  
    ProducerConfig config = new ProducerConfig(props);  
    Producer<String, String> producer = new Producer<String, String>(config);  
      
    Send a single message  
      
    // The message is sent to a randomly selected partition registered in ZK  
    ProducerData<String, String> data = new ProducerData<String, String>("test-topic", "test-message");  
    producer.send(data);      
      
    producer.close();  


    q样是一个标准的producer?br />
    consumer的代?br />
    // specify some consumer properties  
    Properties props = new Properties();  
    props.put("zk.connect", "localhost:2181");  
    props.put("zk.connectiontimeout.ms", "1000000");  
    props.put("groupid", "test_group");  
      
    // Create the connection to the cluster  
    ConsumerConfig consumerConfig = new ConsumerConfig(props);  
    ConsumerConnector consumerConnector = Consumer.createJavaConsumerConnector(consumerConfig);  
      
    // create 4 partitions of the stream for topic “test”, to allow 4 threads to consume  
    Map<String, List<KafkaMessageStream<Message>>> topicMessageStreams =   
        consumerConnector.createMessageStreams(ImmutableMap.of("test", 4));  
    List<KafkaMessageStream<Message>> streams = topicMessageStreams.get("test");  
      
    // create list of 4 threads to consume from each of the partitions   
    ExecutorService executor = Executors.newFixedThreadPool(4);  
      
    // consume the messages in the threads  
    for(final KafkaMessageStream<Message> stream: streams) {  
      executor.submit(new Runnable() {  
        public void run() {  
          for(Message message: stream) {  
            // process message  
          }   
        }  
      });  
    }  







    paulwong 2013-09-08 17:32 发表评论
    ]]>
    LOG ANALYST BIG DATA SYSTEM资源http://www.aygfsteel.com/paulwong/archive/2013/09/08/403819.htmlpaulwongpaulwongSun, 08 Sep 2013 08:21:00 GMThttp://www.aygfsteel.com/paulwong/archive/2013/09/08/403819.htmlhttp://www.aygfsteel.com/paulwong/comments/403819.htmlhttp://www.aygfsteel.com/paulwong/archive/2013/09/08/403819.html#Feedback0http://www.aygfsteel.com/paulwong/comments/commentRss/403819.htmlhttp://www.aygfsteel.com/paulwong/services/trackbacks/403819.html

    apache kafka在数据处理中特别是日志和消息的处理上?x)有很多(gu)的表玎ͼq里写个索引Q关于kafka的文章暂时就更新到这里,最q利用空闲时间在对kafka做一些功能性增强,qjava化,虽然现在已经有很多这L(fng)版本Q但是根据实际需求来改变才是最适合的?/p>

    首先当然推荐的是kafka的官|?nbsp;http://kafka.apache.org/ 

    在官|最值得参考的文章是kafka designQ?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">http://kafka.apache.org/design.htmlQ我的文章也基本都是参照q里的说明,大家要特别重视这文章,里面有好多理念都特别好,推荐多读几遍?/p>

    在OSC的翻译频道有kafka design全中文的译Q翻得挺好的Q推荐一下:(x)http://www.oschina.net/translate/kafka-design

    kafka的wiki是很不错的学?fn)文档?x)https://cwiki.apache.org/confluence/display/KAFKA/Index

    ——————————————————————————————————

    接下来就是我写的一pd文章Q文章都是@序渐q的方式带你?jin)解kafkaQ?/p>

    关于kafka的基本知识,分布式的基础Q?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《分布式消息pȝKafka初步?/a>

    kafka的分布式搭徏Qquick startQ?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《kafka分布式环境搭建?/a>

    关于kafka的实现细节,q主要就是讲design的部分:(x)《细节上?/a>?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《细节下?/a>

    关于kafka开发环境,scala环境的搭建:(x)《开发环境搭建?/a>

    数据生者,producer的用法:(x)《producer的用法?/a>?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《producer使用注意?/a>

    数据消费者,consumer的用法:(x)《consumer的用法?/a>

    q有些零的Q关于通信D늚源码解读Q?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《net包源码解诅R?/a>?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《broker配置?/a>

    ——————————————————————————————————

    扩展的阅读还有下面这些:(x)

    我的好友写的关于kafka和jafka的相兛_客,特别好,我有很多问题?sh)都找他解决的,大神一般的存在Q?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">http://rockybean.github.com/   @rockybean

    kafka的java化版本jafkaQ?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">https://github.com/adyliu/jafka

    淘宝的metaQQ?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">https://github.com/killme2008/Metamorphosis

    我最q在写的inforQQ刚开始写Q我也纯_Ҏ(gu)Z(jin)M源码Q不定期更新哈:(x)https://github.com/ielts0909/inforq

    后面一阶段可能更新点儿关于cas的东西吧Q具体也没想好,最q一直出差,写代码的旉都很?/p>

    --------------------------------------------------------------------------------

    0.8版本的相x(chng)新如下:(x)

    0.8更新内容介绍Q?a target="_blank" rel="nofollow" style="padding: 0px; margin: 0px; color: #0072bb; outline: 0px;">《kafka0.8版本的一些更新?/a>



    paulwong 2013-09-08 16:21 发表评论
    ]]>
    վ֩ģ壺 | | ͤ| | Ĭ| Ī| | | | | | | | | | ̳| | ϳ| ˮ| Т| ɽ| | | | ԫ| | ƽ½| | ̶| Դ| żҸ| | ͨ| ľ| | | | | | ߺ| |