無為

          無為則可為,無為則至深!

            BlogJava :: 首頁 :: 聯系 :: 聚合  :: 管理
            190 Posts :: 291 Stories :: 258 Comments :: 0 Trackbacks
          • Survey & Tutorial Papers

            • Data Clustering: A review ,
              Anil K. Jain and M. N. Murthy and P. J. Flynn. Pattern Recognition and Image Processing Lab, Department of Computer Science And Engineering, Michigan State University.
              [PDF]
            • Tutorial: Clustering Techniques for Large Data Sets: From the Past to the Future. ,
              A. Hinneburg and D. Keim. Tutorial Notes for ACM SIGKDD int. conf. on Knowledge Discovery and Data Mining, 1999",
              [PDF]
            • Clustering Algorithms for Spatial Databases: A Survey ,
              Erica Kolatch, Dept. of Computer Science, University of Maryland, College Park.
              [PDF]
          • BIRCH

            • BIRCH: An Efficient Data Clustering Method for Very Large Databases ,
              T. Zhang, R. Ramakrishnan and M. Livny, In Proc. of ACM SIGMOD International Conferance on Management of Data, 1996.
              [PDF]
            • BIRCH: A New Data Clustering Algorithm and Its Applications,
              T. Zhang, R. Ramakrishnan and M. Livny, Kluwer Academic Publishers, Boston.
              [PDF][Source Code] [local copy of the code]
          • CURE

            • CURE: An efficient algorithm for clustering large databases , ,
              S. Guha, R. Rastogi and K. Shim, n Proceedings of ACM SIGMOD International Conference on Management of Data, pages 73--84, New York, 1998. ACM.
              [ Short version(PDF)] [ long version (PS)] [Source Code (provided by Eui-Hong (Sam) Han, Dept. of Comp. Science & Eng. Univ. of Minnesota; han@cs.umn.edu)]
          • CLARANS

            • Efficient and Effective Clustering Methods for Spatial Data Mining, ,
              R. T. Ng and J. Han, 20th International Conference on Very Large Data Bases, September 12--15, 1994, Santiago, Chile proceeding.
              [ PDF]
          • DBSCAN

            • A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, ,
              Ester M., Kriegel H.-P., Sander J., Xu X., Proc. 2nd Int. Conf.on Knowledge Discovery and Data Mining (KDD′96), Portland, OR, 1996, pp. 226-231
              [ PDF]
          • ScaleKM and ScaleEM

            • Scaling Clustering Algorithms to Large Databases ,
              P. S. Bradley and Usama M. Fayyad and Cory Reina, Knowledge Discovery and Data Mining, 1998.
              [PDF]
            • Scaling EM (Expectation-Maximization) Clustering to Large Databases,
              P. S. Bradley and Usama Fayyad and Cory Reina, Microsoft Research, Tech. Report MSR-TR-98-35.
              [PDF]
          • MAFIA

            • MAFIA: Efficient and scalable subspace clustering for very large data sets
              H. Nagesh S. Goil and A. Choudhary, Technical Report 9906-010, Northwestern University, June 1999.
              [PDF]
          • CHAMELEON

            • CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling.
              George Karypis and Eui-Hong (Sam) Han and Vipin Kumar. Computer Vol. 32, No. 8, 1999.
              [PDF]
          • ROCK

            • ROCK: a robust clustering algorithm for categorical attributes .
              S. Guha, R. Rastogi and K. Shim. In Proceedings of International Conference on Data Engineering, 1999.
              [PDF]
          • WaveCluster

            • WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases.
              Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Proc. 24th Int. Conf. Very Large Data Bases.
              [PDF]
          • STING

            • STING : A Statistical Information Grid Approach to Spatial Data Mining.
              Wei Wang and Jiong Yang and Richard R. Muntz. The {VLDB} Journal, 1997.
              [PDF]
            • STING+: An Approach to Active Spatial Data Mining.
              Wei Wang and Jiong Yang and Richard R. Muntz. ICDE, 1999.
              [PDF]
          • DENCLUE

            • An Efficient Approach to Clustering in Multimedia Databases with Noise.
              Hinneburg A., Keim D.A. Proc. 4rd Int. Conf. on Knowledge Discovery and Data Mining, New York, AAAI Press, 1998.
              [PDF]
          • OPTICS

            • OPTICS: Ordering Points To Identify the Clustering Structure, .
              nkerst M., Breunig M. M., Kriegel H.-P., Sander J. Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD′99), Philadelphia, PA, 1999, pp. 49-60.
              [PDF]
          • ENCLUS

          ???Source Code:(Top)
          ??- BIRCH
          ??- CLIQUE Link Inactive
          ??Demo:(Top)
          ??- Robust & Competitive Clustering Demo 1
          ??-
          Clustering Demo 2 Currently Down
          ??



          凡是有該標志的文章,都是該blog博主Caoer(草兒)原創,凡是索引、收藏
          、轉載請注明來處和原文作者。非常感謝。

          posted on 2006-06-24 13:51 草兒 閱讀(2142) 評論(6)  編輯  收藏 所屬分類: BI and DM

          Feedback

          # re: 聚類論文資源和源代碼[未登錄] 2008-12-20 14:10 yf
          你好,我想要“聚類論文資源和源代碼”這部分內容,但是好像下載不了,麻煩你給我發一下行么?謝謝!sz-newsystem@163.com  回復  更多評論
            

          # re: 聚類論文資源和源代碼 2010-09-14 16:13 laiyue147
          能給我發一份“聚類論文資源和源代碼”嗎?謝謝!
          好像下載不了。
          laiyue147@163.com  回復  更多評論
            

          # re: 聚類論文資源和源代碼 2011-03-29 09:23 liyuhan
          您好!“聚類論文資源和源代碼”我也下不了,麻煩能發給我一份嗎?十分感謝!601220397@qq.com  回復  更多評論
            

          # re: 聚類論文資源和源代碼 2011-04-11 17:08 qiutian
          可以給我一份嗎?做畢業設計,急啊!非常感謝!qiutian520yue@163.com  回復  更多評論
            

          # re: 聚類論文資源和源代碼[未登錄] 2011-04-11 21:45 CC
          繼續求助于你的源代碼,望能發一份源代碼到我郵箱335682242@qq.com,不勝感激啊  回復  更多評論
            

          # re: 聚類論文資源和源代碼 2011-11-19 13:17 kingkejv
          能給我一份嗎,搞畢業設計用到,但沒編出來
          謝謝啦!
          我的郵箱kingkejv@163.com  回復  更多評論
            

          主站蜘蛛池模板: 成安县| 措美县| 泾川县| 马龙县| 资源县| 小金县| 永康市| 沂南县| 通州市| 阿拉善右旗| 右玉县| 张家川| 甘孜县| 常州市| 霍州市| 岫岩| 广丰县| 葵青区| 西吉县| 钟祥市| 虹口区| 禄劝| 龙海市| 离岛区| 达拉特旗| 元氏县| 宁安市| 庆城县| 西贡区| 建湖县| 江门市| 娄烦县| 固安县| 大悟县| 上林县| 博罗县| 永州市| 鹤壁市| 荥阳市| 双城市| 厦门市|