guozhang

          Java Beginner

          Differential of matrix

          Differential of matrix(1)

                This artical introduces the simplest theory of differential of matrix. Here, a matrix every element of which is a function of a variable is disscussed.(Quite simple, huh)

          1. Definition

              Let A be a matrix each element of which is a function of variable t,

          1.JPG

          If t is defined at a range from a and b, i.e., t[a, b], A(t) is claimed to be defined within region [a, b];

          If each element aij(t) is continuous, differentiable, integrable, A(t) is said to be continuous, differentiable, integrable respectively.

          When A(t) is differentiable, its differential is defined as

          2.JPG


              Similarly, the integral of A(t) when it’s integrable is defined as

                                                 
          3.JPG

          2. Application

          1). 4.JPG

          Proof:
              5.JPG

                            6.JPG

          2).7.JPG

          Proof:
              Suppose 8.JPG, 9.JPG, the element at the ith row and jth

          column of their product matrix A(t)B(t) is

                                                 10.JPG
          Therefore,
                          11.JPG

                           12.JPG

                           13.JPG

                          14.JPG

                           
                                     15.JPG
           

          Note

               The differential 
                         16.JPG 
              is correct when A(t) and B(t) are multipliable, otherwise A(t)B(t) will become meaningless.  Another pitfall is that you cannot take it for granted that the following formula is right as well,
                         
          17.JPG

                As a matter of fact, it is incorrect indeed. There is a quick and simple way to acquire yourself. A(t) is an m×n dimensional matrix, and B(t) n×p, so 
                                                     18.JPG 

          is meaningless.

          3). 19.JPG


          Proof:
                  The matrix tA=(taij)m
          ×n and the exponent function of tA is
                                              
          20.JPG

          According to the definition of the differential of matrix,   
                             21.JPG


          4).  22.JPG

          Proof:
                  The matrix tA=(taij)m
          ×n and the sine function of tA is
                                           
          23.JPG

          According to the definition of the differential of matrix, 
                        24.JPG
          Applying the same approach, we can proof its counterpart,

                                           25.JPG


          posted on 2005-12-29 17:37 Guo Zhang 閱讀(425) 評論(0)  編輯  收藏 所屬分類: 數(shù)理統(tǒng)計


          只有注冊用戶登錄后才能發(fā)表評論。


          網(wǎng)站導航:
          博客園   IT新聞   Chat2DB   C++博客   博問  
          相關(guān)文章:
           
          <2025年6月>
          25262728293031
          1234567
          891011121314
          15161718192021
          22232425262728
          293012345

          導航

          統(tǒng)計

          常用鏈接

          留言簿(1)

          隨筆檔案

          文章分類

          文章檔案

          收藏夾

          搜索

          最新隨筆

          最新評論

          閱讀排行榜

          評論排行榜

          主站蜘蛛池模板: 三门峡市| 昭平县| 应城市| 寿阳县| 鸡东县| 尚义县| 祥云县| 即墨市| 临泽县| 汕尾市| 黄龙县| 洪泽县| 杭州市| 嘉祥县| 泸溪县| 疏附县| 龙山县| 岳阳县| 宜昌市| 双流县| 阿坝县| 赤水市| 大新县| 嘉善县| 大埔区| 毕节市| 安远县| 焉耆| 天津市| 金沙县| 龙游县| 日土县| 尤溪县| 楚雄市| 大庆市| 江都市| 竹山县| 汝城县| 梓潼县| 大关县| 镇远县|