??xml version="1.0" encoding="utf-8" standalone="yes"?> 量用鸟语描qCQ翻译成中文反而容易误解?br /> An explain plan is a representation of the access path that is taken when a query is executed within Oracle. At the physical level Oracle reads blocks of data. The smallest amount of data read is a single Oracle block, the largest is constrained by operating system limits (and multiblock i/o). Logically Oracle finds the data to read by using the following methods: When looking at a plan, the rightmost (ie most inndented) uppermost operation is the first thing that is executed. --采用最x上最先执?/span>的原则看层次关系Q在同一U如果某个动作没有子ID最先执?/span> 1.看一个简单的例子Q?/span> Query Plan 优化模式是CHOOSE的情况下Q看Cost参数是否有值来军_采用CBOq是RBOQ?br />SELECT STATEMENT [CHOOSE] Cost=1234 --Cost有|采用CBO 2.层次的父子关p,看比较复杂的例子Q?/strong> Here the same principles apply, the FIRST GRANDCHILD is the initial operation then the FIRST CHILD followed by the SECOND CHILD and finally the PARENT collates the output. Execution Plan 左侧的两排数据,前面的是序列号IDQ后面的是对应的PIDQ父IDQ?br /> A shortened summary of this is: 1.Full Table Scan (FTS) 全表扫描 In a FTS operation, the whole table is read up to the high water mark (HWM). The HWM marks the last block in the table that has ever had data written to it. If you have deleted all the rows then you will still read up to the HWM. Truncate resets the HWM back to the start of the table. FTS uses multiblock i/o to read the blocks from disk. --全表扫描模式下会L据到表的高水位线QHWM卌C曄扩展的最后一个数据块Q,d速度依赖于Oracle初始化参?/span>db_block_multiblock_read_count Query Plan 2.Index Lookup 索引扫描 There are 5 methods of index lookup: index unique scan --索引唯一扫描 index full scan --索引全局扫描 index fast full scan --索引快速全局扫描Q不带order by情况下常发生 3.Rowid 物理ID扫描 This is the quickest access method available.Oracle retrieves the specified block and extracts the rows it is interested in. --Rowid扫描是最快的讉K数据方式 有三U连接方式: 1.Sort Merge Join (SMJ) --׃sort是非常耗资源的Q所以这U连接方式要避免 Rows are produced by Row Source 1 and are then sorted Rows from Row Source 2 are then produced and sorted by the same sort key as Row Source 1. Row Source 1 and 2 are NOT accessed concurrently. SQL> explain plan for
Sorting is an expensive operation, especially with large tables. Because of this, SMJ is often not a particularly efficient join method. 2.Nested Loops (NL) --比较高效的一U连接方?/span> Fetches the first batch of rows from row source 1, Then we probe row source 2 once for each row returned from row source 1. SQL> explain plan for
Query Plan 3.Hash Join --最为高效的一U连接方?/span> New join type introduced in 7.3, More efficient in theory than NL & SMJ, Only accessible via the CBO. Smallest row source is chosen and used to build a hash table and a bitmap The second row source is hashed and checked against the hash table looking for joins. The bitmap is used as a quick lookup to check if rows are in the hash table and are especially useful when the hash table is too large to fit in memory.
SQL> explain plan for
Query Plan
Hash joins are enabled by the parameter HASH_JOIN_ENABLED=TRUE in the init.ora or session. TRUE is the default in 7.3. 3.Cartesian Product --卡_积Q不真正的q接方式Qsql肯定写的有问?/span> A Cartesian Product is done where they are no join conditions between 2 row sources and there is no alternative method of accessing the data. Not really a join as such as there is no join! Typically this is caused by a coding mistake where a join has been left out.
SQL> explain plan for
Query Plan
The CARTESIAN keyword indicate that we are doing a cartesian product. 七、运符 1.sort --排序Q很消耗资?/span> There are a number of different operations that promote sorts: 2.filter --qoQ如not in、min函数{容易?br /> Has a number of different meanings, used to indicate partition elimination, may also indicate an actual filter step where one row source is filtering, another, functions such as min may introduce filter steps into query plans. 3.view --视图Q大都由内联视图产生 When a view cannot be merged into the main query you will often see a projection view operation. This indicates that the 'view' will be selected from directly as opposed to being broken down into joins on the base tables. A number of constructs make a view non mergeable. Inline views are also non mergeable.
Query Plan 4.partition view --分区视图
Partition views are a legacy technology that were superceded by the partitioning option. This section of the article is provided as reference for such legacy systems. 本文介绍了ORACLE执行计划的一些基本概念,供学习应用?/span> 一Q相关的概念 Rowid的概念:rowid是一个伪列,既然是伪列,那么q个列就不是用户定义Q而是pȝ自己l加上的?Ҏ个表都有一个rowid的伪列,但是表中q不物理存储ROWID列的倹{不q你可以像用其它列那样使用它,但是不能删除改列Q也不能对该列的D?修改、插入。一旦一行数据插入数据库Q则rowid在该行的生命周期内是唯一的,卛_使该行生行q移Q行的rowid也不会改变?/span> Recursive SQL概念Q有时ؓ了执行用户发出的一个sql语句QOracle必须执行一些额外的语句Q我们将q些额外的语句称之ؓ'recursive calls'?recursive SQL statements'。如当一个DDL语句发出后,ORACLEL隐含的发Z些recursive SQL语句Q来修改数据字典信息Q以便用户可以成功的执行该DDL语句。当需要的数据字典信息没有在共享内存中Ӟl常会发生Recursive callsQ这些Recursive calls会将数据字典信息从硬盘读入内存中。用户不比关心这些recursive SQL语句的执行情况,在需要的时候,ORACLE会自动的在内部执行这些语句。当然DML语句与SELECT都可能引起recursive SQL。简单的_我们可以触发器视ؓrecursive SQL?/span> Row Source(行源)Q用在查询中Q由上一操作q回的符合条件的行的集合Q即可以是表的全部行数据的集合;也可以是表的部分行数据的集合Q也可以为对?个row sourceq行q接操作(如joinq接)后得到的行数据集合?/span> Predicate(谓词)Q一个查询中的WHERE限制条g Driving Table(驱动?Q该表又UCؓ外层?OUTER TABLE)。这个概는于嵌套与HASHq接中。如果该row sourceq回较多的行数据Q则Ҏ有的后箋操作有负面媄响。注意此处虽然翻译ؓ驱动表,但实际上译为驱动行?driving row source)更ؓ切。一般说来,是应用查询的限制条g后,q回较少行源的表作ؓ驱动表,所以如果一个大表在WHERE条g有有限制条g(如等值限 ?Q则该大表作为驱动表也是合适的Q所以ƈ不是只有较小的表可以作ؓ驱动表,正确说法应该为应用查询的限制条g后,q回较少行源的表作ؓ驱动表。在执行 计划中,应该为靠上的那个row sourceQ后面会l出具体说明。在我们后面的描qCQ一般将该表UCؓq接操作的row source 1?/span> Probed Table(被探查表)Q该表又UCؓ内层?INNER TABLE)。在我们从驱动表中得到具体一行的数据后,在该表中LW合q接条g的行。所以该表应当ؓ大表(实际上应该ؓq回较大row source的表)且相应的列上应该有烦引。在我们后面的描qCQ一般将该表UCؓq接操作的row source 2?/span> l合索引(concatenated index)Q由多个列构成的索引Q如create index idx_emp on emp(col1, col2, col3, ……)Q则我们Uidx_emp索引为组合烦引。在l合索引中有一个重要的概念Q引导列(leading column)Q在上面的例子中Qcol1列ؓ引导列。当我们q行查询时可以?#8221;where col1 = ? ”Q也可以使用”where col1 = ? and col2 = ?”Q这L限制条g都会使用索引Q但?#8221;where col2 = ? ”查询׃会用该索引。所以限制条件中包含先导列时Q该限制条g才会使用该组合烦引?/span> 可选择?selectivity)Q比较一下列中唯一键的数量和表中的行数Q就可以判断该列的可选择性?如果该列?#8221;唯一键的数量/表中的行?#8221;的比D接近1Q则该列的可选择性越高,该列p适合创徏索引Q同L引的可选择性也高。在可选择性高的列上进 行查询时Q返回的数据p,比较适合使用索引查询?/span> 二.oracle讉K数据的存取方?/span> 1) 全表扫描QFull Table Scans, FTSQ?/span> 为实现全表扫描,Oracled表中所有的行,q检查每一行是否满句的WHERE限制条g一个多块读 操作可以使一ơI/O能读取多块数据块(db_block_multiblock_read_count参数讑֮)Q而不是只d一个数据块Q这极大的减 了I/OL敎ͼ提高了系l的吞吐量,所以利用多块读的方法可以十分高效地实现全表扫描Q而且只有在全表扫描的情况下才能用多块读操作。在q种讉K?式下Q每个数据块只被Mơ?/span> 使用FTS的前提条Ӟ在较大的表上不徏议用全表扫描,除非取出数据的比较多Q超q总量?% -- 10%Q或你想使用q行查询功能时?/span> 使用全表扫描的例子: ~~~~~~~~~~~~~~~~~~~~~~~~ SQL> explain plan for select * from dual; Query Plan ----------------------------------------- SELECT STATEMENT[CHOOSE] Cost= TABLE ACCESS FULL DUAL 2) 通过ROWID的表存取QTable Access by ROWID或rowid lookupQ?/span> 行的ROWID指出了该行所在的数据文g、数据块以及行在该块中的位置Q所以通过ROWID来存取数据可以快速定位到目标数据上,是Oracle存取单行数据的最快方法?/span> q种存取Ҏ不会用到多块L作,一ơI/O只能d一个数据块。我们会l常在执行计划中看到该存取方法,如通过索引查询数据?/span> 使用ROWID存取的方法: SQL> explain plan for select * from dept where rowid = 'AAAAyGAADAAAAATAAF'; Query Plan ------------------------------------ SELECT STATEMENT [CHOOSE] Cost=1 TABLE ACCESS BY ROWID DEPT [ANALYZED]
我们先通过index查找到数据对应的rowid?对于非唯一索引可能q回多个rowid?Q然后根据rowid直接从表中得到具体的数据Q这 U查找方式称为烦引扫描或索引查找(index lookup)。一个rowid唯一的表CZ行数据,该行对应的数据块是通过一ơi/o得到的,在此情况下该ơi/o只会d一个数据库块?/span> 在烦引中Q除了存储每个烦引的值外Q烦引还存储h此值的行对应的ROWID倹{烦引扫描可以由2步组成:(1) 扫描索引得到对应的rowid倹{?(2) 通过扑ֈ的rowid从表中读出具体的数据。每步都是单独的一ơI/OQ但是对于烦引,׃l常使用Q绝大多数都已经CACHE到内存中Q所以第1步的 I/Ol常是逻辑I/OQ即数据可以从内存中得到。但是对于第2步来_如果表比较大Q则其数据不可能全在内存中,所以其I/O很有可能是物理I/OQ这 是一个机械操作,相对逻辑I/O来说Q是极其Ҏ间的。所以如果多大表q行索引扫描Q取出的数据如果大于总量?% -- 10%Q用烦引扫描会效率下降很多。如下列所C: Query Plan ------------------------------------ SELECT STATEMENT [CHOOSE] Cost=1 TABLE ACCESS BY ROWID EMP [ANALYZED] INDEX UNIQUE SCAN EMP_I1 SQL> explain plan for select empno from emp where empno=10;-- 只查询empno列?/span> Query Plan ------------------------------------ SELECT STATEMENT [CHOOSE] Cost=1 INDEX UNIQUE SCAN EMP_I1 q一步讲Q如果sql语句中对索引列进行排序,因ؓ索引已经预先排序好了Q所以在执行计划中不需要再对烦引列q行排序 where empno > 7876 order by empno; Query Plan -------------------------------------------------------------------------------- SELECT STATEMENT[CHOOSE] Cost=1 TABLE ACCESS BY ROWID EMP [ANALYZED] INDEX RANGE SCAN EMP_I1 [ANALYZED] Ҏ索引的类型与where限制条g的不同,?U类型的索引扫描Q?/span> 索引唯一扫描(index unique scan) 索引范围扫描(index range scan) 索引全扫?index full scan) 索引快速扫?index fast full scan) (1) 索引唯一扫描(index unique scan) 通过唯一索引查找一个数值经常返回单个ROWID。如果存在UNIQUE 或PRIMARY KEY U束Q它保证了语句只存取单行Q的话,Oraclel常实现唯一性扫描?/span> 使用唯一性约束的例子Q?/span> SQL> explain plan for select empno,ename from emp where empno=10; Query Plan ------------------------------------ SELECT STATEMENT [CHOOSE] Cost=1 TABLE ACCESS BY ROWID EMP [ANALYZED] INDEX UNIQUE SCAN EMP_I1 (2) 索引范围扫描(index range scan) 使用一个烦引存取多行数据,在唯一索引上用烦引范围扫描的典型情况下是在谓?where限制条g)中用了范围操作W??gt;?lt;?lt;>?gt;=?lt;=、between) 使用索引范围扫描的例子: where empno > 7876 order by empno; Query Plan -------------------------------------------------------------------------------- SELECT STATEMENT[CHOOSE] Cost=1 TABLE ACCESS BY ROWID EMP [ANALYZED] INDEX RANGE SCAN EMP_I1 [ANALYZED] 在非唯一索引上,谓词col = 5可能q回多行数据Q所以在非唯一索引上都使用索引范围扫描?/span> 使用index rang scan?U情况: (a) 在唯一索引列上使用了range操作W?> < <> >= <= between) (b) 在组合烦引上Q只使用部分列进行查询,D查询出多?/span> (c) 寚w唯一索引列上q行的Q何查询?/span> (3) 索引全扫?index full scan) 与全表扫描对应,也有相应的全索引扫描。而且此时查询出的数据都必M索引中可以直接得到?/span> 全烦引扫描的例子Q?/span> An Index full scan will not perform single block i/o's and so it may prove to be inefficient. e.g. Index BE_IX is a concatenated index on big_emp (empno, ename) Query Plan -------------------------------------------------------------------------------- SELECT STATEMENT[CHOOSE] Cost=26 INDEX FULL SCAN BE_IX [ANALYZED] 扫描索引中的所有的数据块,?index full scan很类|但是一个显著的区别是它不Ҏ询出的数据进行排序,x据不是以排序序被返回。在q种存取Ҏ中,可以使用多块d能,也可以用ƈ行读入,以便获得最大吞吐量与羃短执行时间?/span> 索引快速扫描的例子Q?/span> BE_IX索引是一个多列烦引: big_emp (empno,ename) SQL> explain plan for select empno,ename from big_emp; Query Plan ------------------------------------------ SELECT STATEMENT[CHOOSE] Cost=1 INDEX FAST FULL SCAN BE_IX [ANALYZED] SQL> explain plan for select ename from big_emp; Query Plan ------------------------------------------ SELECT STATEMENT[CHOOSE] Cost=1 INDEX FAST FULL SCAN BE_IX [ANALYZED] ?表之间的q接 Join是一U试囑ְ两个表结合在一L谓词Q一ơ只能连?个表Q表q接也可以被UCؓ表关联。在后面的叙 qCQ我们将会?#8221;row source”来代?#8221;?#8221;Q因Z用row source更严谨一些,q且参与连接的2个row source分别UCؓrow source1和row source 2。Joinq程的各个步骤经常是串行操作Q即使相关的row source可以被ƈ行访问,卛_以ƈ行的d做joinq接的两个row source的数据,但是在将表中W合限制条g的数据读入到内存形成row source后,join的其它步骤一般是串行的。有多种Ҏ可以?个表q接hQ当然每U方法都有自q优缺点,每种q接cd只有在特定的条g下才?发挥出其最大优ѝ?/span> row source(?之间的连接顺序对于查询的效率有非常大的媄响。通过首先存取特定的表Q即该表作为驱动表Q这样可以先应用某些限制条gQ从而得C?较小的row sourceQɘq接的效率较高,q也是我们常说的要先执行限制条件的原因。一般是在将表读入内存时Q应用where子句中对该表的限制条件?/span> Ҏ2个row source的连接条件的中操作符的不同,可以连接分为等D?如WHERE A.COL3 = B.COL4)、非{D?WHERE A.COL3 > B.COL4)、外q接(WHERE A.COL3 = B.COL4(+))。上面的各个q接的连接原理都基本一P所以ؓ了简单期_下面以等D接ؓ例进行介l?/span> 在后面的介绍中,都已Q?/span> SELECT A.COL1, B.COL2 FROM A, B WHERE A.COL3 = B.COL4; Zq行说明Q假设A表ؓRow Soruce1Q则其对应的q接操作兌列ؓCOL 3QB表ؓRow Soruce2Q则其对应的q接操作兌列ؓCOL 4Q?/span> q接cdQ?/span> 目前为止Q无接操作符如何Q典型的q接cd共有3U: 排序 - - 合ƈq接(Sort Merge Join (SMJ) ) 嵌套循环(Nested Loops (NL) ) 哈希q接(Hash Join) 排序 - - 合ƈq接(Sort Merge Join, SMJ) 内部q接q程Q?/span> 1) 首先生成row source1需要的数据Q然后对q些数据按照q接操作兌?如A.col3)q行排序?/span> 2) 随后生成row source2需要的数据Q然后对q些数据按照与sort source1对应的连接操作关联列(如B.col4)q行排序?/span> 3) 最后两边已排序的行被放在一h行合q操作,卛_2个row source按照q接条gq接h 下面是连接步骤的囑Ş表示Q?/span> MERGE /\ SORTSORT || Row Source 1Row Source 2 如果row source已经在连接关联列上被排序Q则该连接操作就不需要再q行sort操作Q这样可以大大提高这U连接操作的q接速度Q因为排序是个极其费资源的操 作,特别是对于较大的表。预先排序的row source包括已经被烦引的?如a.col3或b.col4上有索引)或row source已经在前面的步骤中被排序了。尽合q两个row source的过E是串行的,但是可以q行讉Kq两个row source(如ƈ行读入数据,q行排序). SMJq接的例子: select /*+ ordered */ e.deptno, d.deptno from emp e, dept d where e.deptno = d.deptno order by e.deptno, d.deptno;
------------------------------------- SELECT STATEMENT [CHOOSE] Cost=17 MERGE JOIN SORT JOIN TABLE ACCESS FULL EMP [ANALYZED] SORT JOIN TABLE ACCESS FULL DEPT [ANALYZED] 嵌套循环(Nested Loops, NL) q个q接Ҏ有驱动表(外部?的概c其实,该连接过E就是一?层嵌套@环,所以外层@环的ơ数少好Q这也就是我们ؓ什么将表或返回较?row source的表作ؓ驱动?用于外层循环)的理Z据。但是这个理论只是一般指导原则,因ؓ遵@q个理论q不能M证语句产生的I/Oơ数最。有?不遵守这个理Z据,反而会获得更好的效率。如果用这U方法,军_使用哪个表作为驱动表很重要。有时如果驱动表选择不正,会D语句的性能很差、很 差?/span> 内部q接q程Q?/span> Row source1的Row 1 ---------------- Probe ->Row source 2 Row source1的Row 2 ---------------- Probe ->Row source 2 Row source1的Row 3 ---------------- Probe ->Row source 2 ……. Row source1的Row n ---------------- Probe ->Row source 2 从内部连接过E来看,需要用row source1中的每一行,d配row source2中的所有行Q所以此时保持row source1可能的与高效的访问row source2(一般通过索引实现)是媄响这个连接效率的关键问题。这只是理论指导原则Q目的是使整个连接操作生最的物理I/Oơ数Q而且如果遵守q?个原则,一般也会ȝ物理I/O数最。但是如果不遵从q个指导原则Q反而能用更的物理I/O实现q接操作Q那管q反指导原则吧!因ؓ最的物理 I/Oơ数才是我们应该遵从的真正的指导原则Q在后面的具体案例分析中qL例子?/span> 在上面的q接q程中,我们URow source1为驱动表或外部表。Row Source2被称探查表或内部表?/span> 在NESTED LOOPSq接中,Oracledrow source1中的每一行,然后在row sourc2中检查是否有匚w的行Q所有被匚w的行都被攑ֈl果集中Q然后处理row source1中的下一行。这个过E一直l,直到row source1中的所有行都被处理。这是从q接操作中可以得到第一个匹配行的最快的Ҏ之一Q这U类型的q接可以用在需要快速响应的语句中,以响应速度?主要目标?/span> 如果driving row source(外部?比较,q且在inner row source(内部?上有唯一索引Q或有高选择性非唯一索引Ӟ使用q种Ҏ可以得到较好的效率。NESTED LOOPS有其它连接方法没有的的一个优ҎQ可以先q回已经q接的行Q而不必等待所有的q接操作处理完才q回数据Q这可以实现快速的响应旉?/span> 如果不用ƈ行操作,最好的驱动表是那些应用了where 限制条g后,可以q回较少行数据的的表Q所以大表也可能UCؓ驱动表,关键看限制条件。对于ƈ行查询,我们l常选择大表作ؓ驱动表,因ؓ大表可以充分利用q?行功能。当Ӟ有时Ҏ询用ƈ行操作ƈ不一定会比查询不使用q行操作效率高,因ؓ最后可能每个表只有很少的行W合限制条gQ而且q要看你的硬仉|是?可以支持q行(如是否有多个CPUQ多个硬盘控制器)Q所以要具体问题具体对待?/span> NLq接的例子: SQL> explain plan for select a.dname,b.sql from dept a,emp b where a.deptno = b.deptno; Query Plan ------------------------- SELECT STATEMENT [CHOOSE] Cost=5 NESTED LOOPS TABLE ACCESS FULL DEPT [ANALYZED] TABLE ACCESS FULL EMP [ANALYZED] q种q接是在oracle 7.3以后引入的,从理Z来说比NL与SMJ更高效,而且只用在CBO优化器中?/span> 较小的row source被用来构建hash table与bitmapQ第2个row source被用来被hansedQƈ与第一个row source生成的hash tableq行匚wQ以便进行进一步的q接。Bitmap被用来作ZU比较快的查找方法,来检查在hash table中是否有匚w的行。特别的Q当hash table比较大而不能全部容U_内存中时Q这U查找方法更为有用。这U连接方法也有NLq接中所谓的驱动表的概念Q被构徏为hash table与bitmap的表为驱动表Q当被构建的hash table与bitmap能被容纳在内存中Ӟq种q接方式的效率极高?/span> HASHq接的例子: SQL> explain plan for select /*+ use_hash(emp) */ empno from emp, dept where emp.deptno = dept.deptno; Query Plan ---------------------------- SELECT STATEMENT[CHOOSE] Cost=3 HASH JOIN TABLE ACCESS FULL DEPT TABLE ACCESS FULL EMP ȝ一下,在哪U情况下用哪U连接方法比较好Q?/span> 排序 - - 合ƈq接(Sort Merge Join, SMJ)Q?/span> a) 对于非等D接,q种q接方式的效率是比较高的?/span> b) 如果在关联的列上都有索引Q效果更好?/span> c) 对于?个较大的row source做连接,该连接方法比NLq接要好一些?/span> d) 但是如果sort mergeq回的row sourceq大Q则又会D使用q多的rowid在表中查询数据时Q数据库性能下降Q因多的I/O?/span> 嵌套循环(Nested Loops, NL)Q?/span> a) 如果driving row source(外部?比较,q且在inner row source(内部?上有唯一索引Q或有高选择性非唯一索引Ӟ使用q种Ҏ可以得到较好的效率?/span> b) NESTED LOOPS有其它连接方法没有的的一个优ҎQ可以先q回已经q接的行Q而不必等待所有的q接操作处理完才q回数据Q这可以实现快速的响应旉?/span> 哈希q接(Hash Join, HJ)Q?/span> a) q种Ҏ是在oracle7后来引入的,使用了比较先q的q接理论Q一般来_其效率应该好于其?U连接,但是q种q接只能用在CBO优化器中Q而且需要设|合适的hash_area_size参数Q才能取得较好的性能?/span> b) ?个较大的row source之间q接时会取得相对较好的效率,在一个row source较小时则能取得更好的效率?/span> c) 只能用于{D接中 W卡儿乘U?Cartesian Product) 当两个row source做连接,但是它们之间没有兌条gӞ׃在两个row source中做W卡儿乘U,q通常q写代码疏漏造成(即程序员忘了写关联条?。笛卡尔乘积是一个表的每一行依ơ与另一个表中的所有行匚w。在Ҏ?况下我们可以使用W卡儿乘U,如在星Şq接中,除此之外Q我们要量使用W卡儿乘U,否则Q自己想l果是什么吧Q?/span> 注意在下面的语句中,?个表之间没有q接?/span> SQL> explain plan for select emp.deptno,dept,deptno from emp,dept Query Plan ------------------------ SLECT STATEMENT [CHOOSE] Cost=5 MERGE JOIN CARTESIAN TABLE ACCESS FULL DEPT SORT JOIN TABLE ACCESS FULL EMP
一、什么是执行计划
二、如何访问数?/strong>
Full Table Scan (FTS) --全表扫描
Index Lookup (unique & non-unique) --索引扫描Q唯一和非唯一Q?/span>
Rowid --物理行id
三、执行计划层ơ关p?/strong>
-----------------------------------------
SELECT STATEMENT [CHOOSE] Cost=1234
**TABLE ACCESS FULL LARGE [:Q65001] [ANALYZED] --[:Q65001]表示是ƈ行方式,[ANALYZED]表示该对象已l分析过?/span>
SELECT STATEMENT [CHOOSE] Cost= --Cost为空Q采用RBO
PARENT1
**FIRST CHILD
****FIRST GRANDCHILD
**SECOND CHILD
四、例子解?/strong>
----------------------------------------------------------
0 **SELECT STATEMENT Optimizer=CHOOSE (Cost=3 Card=8 Bytes=248)
1 0 **HASH JOIN (Cost=3 Card=8 Bytes=248)
2 1 ****TABLE ACCESS (FULL) OF 'DEPT' (Cost=1 Card=3 Bytes=36)
3 1 ****TABLE ACCESS (FULL) OF 'EMP' (Cost=1 Card=16 Bytes=304)
Execution starts with ID=0: SELECT STATEMENT but this is dependand on it's child objects
So it executes its first child step: ID=1 PID=0 HASH JOIN but this is dependand on it's child objects
So it executes its first child step: ID=2 PID=1 TABLE ACCESS (FULL) OF 'DEPT'
Then the second child step: ID=3 PID=2 TABLE ACCESS (FULL) OF 'EMP'
Rows are returned to the parent step(s) until finished
五、表讉K方式
------------------------------------
SELECT STATEMENT [CHOOSE] Cost=1
**INDEX UNIQUE SCAN EMP_I1 --如果索引里就扑ֈ了所要的数据Q就不会再去讉K表了
Method for looking up a single key value via a unique index. always returns a single value, You must supply AT LEAST the leading column of the index to access data via the index.
eg:
SQL> explain plan for select empno,ename from emp where empno=10;
index range scan --索引局部扫?/span>
Index range scan is a method for accessing a range values of a particular column. AT LEAST the leading column of the index must be supplied to access data via the index. Can be used for range operations (e.g. > < <> >= <= between) .
eg:
SQL> explain plan for select mgr from emp where mgr = 5;
Full index scans are only available in the CBO as otherwise we are unable to determine whether a full scan would be a good idea or not. We choose an index Full Scan when we have statistics that indicate that it is going to be more efficient than a Full table scan and a sort. For example we may do a Full index scan when we do an unbounded scan of an index and want the data to be ordered in the index order.
eg:
SQL> explain plan for select empno,ename from big_emp order by empno,ename;
Scans all the block in the index, Rows are not returned in sorted order, Introduced in 7.3 and requires V733_PLANS_ENABLED=TRUE and CBO, may be hinted using INDEX_FFS hint, uses multiblock i/o, can be executed in parallel, can be used to access second column of concatenated indexes. This is because we are selecting all of the index.
eg:
SQL> explain plan for select empno,ename from big_emp;
index skip scan --索引跌扫描Qwhere条g列是非烦引的前导列情况下常发?br />Index skip scan finds rows even if the column is not the leading column of a concatenated index. It skips the first column(s) during the search.
eg:
SQL> create index i_emp on emp(empno, ename);
SQL> select /*+ index_ss(emp i_emp)*/ job from emp where ename='SMITH';
六、表q接方式
select /*+ ordered */ e.deptno,d.deptno
from emp e,dept d
where e.deptno = d.deptno
order by e.deptno,d.deptno;
Query Plan
-------------------------------------
SELECT STATEMENT [CHOOSE] Cost=17
**MERGE JOIN
****SORT JOIN
******TABLE ACCESS FULL EMP [ANALYZED]
****SORT JOIN
******TABLE ACCESS FULL DEPT [ANALYZED]
For nested loops to be efficient it is important that the first row source returns as few rows as possible as this directly controls the number of probes of the second row source. Also it helps if the access method for row source 2 is efficient as this operation is being repeated once for every row returned by row source 1.
select a.dname,b.sql
from dept a,emp b
where a.deptno = b.deptno;
-------------------------
SELECT STATEMENT [CHOOSE] Cost=5
**NESTED LOOPS
****TABLE ACCESS FULL DEPT [ANALYZED]
****TABLE ACCESS FULL EMP [ANALYZED]
select /*+ use_hash(emp) */ empno
from emp,dept
where emp.deptno = dept.deptno;
----------------------------
SELECT STATEMENT [CHOOSE] Cost=3
**HASH JOIN
****TABLE ACCESS FULL DEPT
****TABLE ACCESS FULL EMP
It can be useful in some circumstances - Star joins uses cartesian products.Notice that there is no join between the 2 tables:
select emp.deptno,dept,deptno
from emp,dept
------------------------------
SLECT STATEMENT [CHOOSE] Cost=5
**MERGE JOIN CARTESIAN
****TABLE ACCESS FULL DEPT
****SORT JOIN
******TABLE ACCESS FULL EMP
order by clauses
group by
sort merge join
eg:
SQL> explain plan for
select ename,tot
from emp,(select empno,sum(empno) tot from big_emp group by empno) tmp
where emp.empno = tmp.empno;
------------------------
SELECT STATEMENT [CHOOSE]
**HASH JOIN
**TABLE ACCESS FULL EMP [ANALYZED]
**VIEW
****SORT GROUP BY
******INDEX FULL SCAN BE_IX
]]>
3Q烦引扫描(Index Scan或index lookupQ?/span>
SQL> explain plan for select empno, ename from emp where empno=10;
但是如果查询的数据能全在索引中找刎ͼ可以避免进行第2步操作,避免了不必要的I/OQ此时即佉K过索引扫描取出的数据比较多Q效率还是很高的
SQL> explain plan for select empno, ename from emp
从这个例子中可以看到Q因为烦引是已经排序了的Q所以将按照索引的顺序查询出W合条g的行Q因此避免了q一步排序操作?/span>
SQL> explain plan for select empno,ename from emp
SQL> explain plan for select empno, ename from big_emp order by empno,ename;
(4) 索引快速扫?index fast full scan)
只选择多列索引的第2列:
SQL> explain plan for
Query Plan
排序是一个费时、费资源的操作,特别对于大表。基于这个原因,SMJl常不是一个特别有效的q接ҎQ但是如?个row source都已l预先排序,则这U连接方法的效率也是蛮高的?/span>
哈希q接(Hash Join, HJ)
要哈希q接有效Q需要设|HASH_JOIN_ENABLED=TRUEQ缺省情况下该参CؓTRUEQ另外,不要忘了q要讄 hash_area_size参数Q以使哈希连接高效运行,因ؓ哈希q接会在该参数指定大的内存中运行,q小的参C使哈希连接的性能比其他连接方式还 要低?/span>
CARTESIAN关键字指Z?个表之间做笛卡尔乘积。假如表emp有n行,dept表有m行,W卡乘U的l果是得到n * m行结果?/span>
]]>
高效Q?span lang="EN-US">
1. SELECT LOC_ID ?/span> LOC_DESC Q?/span>REGION FROM LOCATION WHERE LOC_ID = 10 UNION SELECT LOC_ID Q?/span>
LOC_DESC Q?/span>REGION FROM LOCATION WHERE REGION = “MELBOURNE”
低效:
1. SELECT LOC_ID Q?/span>LOC_DESC Q?/span>REGION FROM LOCATION WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
?span lang="EN-US">IN来替?span lang="EN-US">ORQ?/span>
q是一条简单易记的规则Q但是实际的执行效果q须验,?span lang="EN-US">Oracle8i下,两者的执行路径g是相同的:
低效:
1. SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效Q?span lang="EN-US">
1. SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30);
避免在烦引列上?span lang="EN-US">IS NULL?span lang="EN-US">IS NOT NULLQ?/span>
避免在烦引中使用M能够为空的列Q?span lang="EN-US">Oracle无法用该索引。对于单列烦引,假如列包含空|索引中将不存在此记录。对于复合烦引,假如每个列都为空Q烦引中同样不存在此记录。假如至有一个列不ؓI,则记录存在于索引中。D例:假如唯一性烦引徏立在表的A列和B列上Qƈ且表中存在一条记录的 AQ?span lang="EN-US">Bgؓ(123Q?span lang="EN-US">null)Q?span lang="EN-US"> Oracle不接受下一条具备相?span lang="EN-US">AQ?span lang="EN-US">B|123,nullQ的记录(插入)。然而假如Q何的索引列都为空Q?span lang="EN-US">Oracle认为整个键gؓI空不等于空。因此您能够插入1000 条具备相同键值的记录,当然他们都是I?span lang="EN-US">! 因ؓIg存在于烦引列?span lang="EN-US">,所?span lang="EN-US">WHERE子句中对索引列进行空值比较将?span lang="EN-US">ORACLE停用该烦引?span lang="EN-US">
L使用索引的第一个列Q?/span>
假如索引是徏立在多个列上Q只有在他的W一个列(leading column)?span lang="EN-US">where子句引用Ӟ优化器才会选择使用该烦引。这也是一条简单而重要的规则Q当仅引用烦引的W二个列Ӟ优化器用了全表扫描而忽略了索引?span lang="EN-US">
?span lang="EN-US">Oracle UNION ALL替换UNION ( 假如有可能的?span lang="EN-US">)Q?/span>
?span lang="EN-US">SQL语句需?span lang="EN-US">UNION两个查询l果集合Ӟq两个结果集合会?span lang="EN-US">Oracle UNION ALL的方式被合ƈQ然后在输出最l结果前q行排序。假如用 Oracle UNION ALL替代UNIONQ这h序就不是必要了。效率就会因此得到提高。需要注意的是,Oracle UNION ALL重复输Z个结果集合中相同记录。因此各位还是要从业务需求分析?span lang="EN-US">Oracle UNION ALL的可行性?span lang="EN-US"> UNION 对l果集合排序,q个操作会用到SORT_AREA_SIZEq块内存。对于这块内存的优化也是相当重要的?span lang="EN-US">