posts - 97,  comments - 93,  trackbacks - 0
          Problem Statement

          Let's say you have a binary string such as the following:
          011100011
          One way to encrypt this string is to add to each digit the sum of its adjacent digits. For example, the above string would become:
          123210122
          In particular, if P is the original string, and Q is the encrypted string, then Q[i] = P[i-1] + P[i] + P[i+1] for all digit positions i. Characters off the left and right edges of the string are treated as zeroes.
          An encrypted string given to you in this format can be decoded as follows (using 123210122 as an example):
          Assume P[0] = 0.
          Because Q[0] = P[0] + P[1] = 0 + P[1] = 1, we know that P[1] = 1.
          Because Q[1] = P[0] + P[1] + P[2] = 0 + 1 + P[2] = 2, we know that P[2] = 1.
          Because Q[2] = P[1] + P[2] + P[3] = 1 + 1 + P[3] = 3, we know that P[3] = 1.
          Repeating these steps gives us P[4] = 0, P[5] = 0, P[6] = 0, P[7] = 1, and P[8] = 1.
          We check our work by noting that Q[8] = P[7] + P[8] = 1 + 1 = 2. Since this equation works out, we are finished, and we have recovered one possible original string.
          Now we repeat the process, assuming the opposite about P[0]:
          Assume P[0] = 1.
          Because Q[0] = P[0] + P[1] = 1 + P[1] = 0, we know that P[1] = 0.
          Because Q[1] = P[0] + P[1] + P[2] = 1 + 0 + P[2] = 2, we know that P[2] = 1.
          Now note that Q[2] = P[1] + P[2] + P[3] = 0 + 1 + P[3] = 3, which leads us to the conclusion that P[3] = 2. However, this violates the fact that each character in the original string must be '0' or '1'. Therefore, there exists no such original string P where the first digit is '1'.
          Note that this algorithm produces at most two decodings for any given encrypted string. There can never be more than one possible way to decode a string once the first binary digit is set.
          Given a String message, containing the encrypted string, return a String[] with exactly two elements. The first element should contain the decrypted string assuming the first character is '0'; the second element should assume the first character is '1'. If one of the tests fails, return the string "NONE" in its place. For the above example, you should return {"011100011", "NONE"}.
          Definition

          Class:
          BinaryCode
          Method:
          decode
          Parameters:
          String
          Returns:
          String[]
          Method signature:
          String[] decode(String message)
          (be sure your method is public)


          Constraints
          -
          message will contain between 1 and 50 characters, inclusive.
          -
          Each character in message will be either '0', '1', '2', or '3'.
          Examples
          0)

          "123210122"
          Returns: { "011100011",  "NONE" }
          The example from above.
          1)

          "11"
          Returns: { "01",  "10" }
          We know that one of the digits must be '1', and the other must be '0'. We return both cases.
          2)

          "22111"
          Returns: { "NONE",  "11001" }
          Since the first digit of the encrypted string is '2', the first two digits of the original string must be '1'. Our test fails when we try to assume that P[0] = 0.
          3)

          "123210120"
          Returns: { "NONE",  "NONE" }
          This is the same as the first example, but the rightmost digit has been changed to something inconsistent with the rest of the original string. No solutions are possible.
          4)

          "3"
          Returns: { "NONE",  "NONE" }

          5)

          "12221112222221112221111111112221111"
          Returns:
          { "01101001101101001101001001001101001",
            "10110010110110010110010010010110010" }

          This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
           1 /**
           2  *
           3  * @author Nicky Qu
           4  * All Rights Reserved. Oct.23th,2007.
           5  */
           6 public class BinaryCode {
           7 
           8     private char[] temp;
           9     private String originalCode0="00";
          10     private String originalCode1="01";
          11 
          12     public String[] decode(String message) {
          13         temp = message.toCharArray();
          14          originalCode0 = Run(temp,originalCode0);
          15          originalCode1 = Run(temp,originalCode1);
          16         return new String[]{originalCode0,originalCode1};
          17     }
          18 
          19     private String Run(char[] temp,String deEncryptedCode) {
          20         int p_i = 0,p_i_1 = 0;
          21         int p_i_add_1 = 0;
          22       for(int i =0;i<temp.length;i++){
          23           p_i_1 =  Character.getNumericValue(deEncryptedCode.charAt(i));
          24           p_i =  Character.getNumericValue(deEncryptedCode.charAt(i+1));
          25           p_i_add_1 =Character.getNumericValue(temp[i]) - p_i - p_i_1;
          26           boolean just = (i==temp.length-1&& (p_i_add_1 != 0);
          27           if(p_i_add_1 < 0||p_i_add_1>2||just){
          28               return "NONE";
          29           }              
          30           deEncryptedCode = deEncryptedCode+ p_i_add_1;          
          31       }
          32         return deEncryptedCode.substring(1,deEncryptedCode.length()-1);
          33     }
          34 }

          posted on 2007-10-23 13:34 wqwqwqwqwq 閱讀(1060) 評論(1)  編輯  收藏 所屬分類: Data Structure && Algorithm

          FeedBack:
          # re: A Q of Encrypting String
          2007-10-23 19:57 | 曲強 Nicky
          public class BinaryCode {

          private String[] result;
          private int[] q;
          private int[] p;

          public String[] decode(String message) {
          result = new String[]{"", ""};
          q = new int[message.length()];
          for (int i = 0; i < q.length; i++) {
          q[i] = Integer.parseInt(String.valueOf(message.charAt(i)));
          }
          for (int j = 0; j < 2; j++) {
          p = new int[q.length];
          p[0] = j;
          result[j] += p[0];
          for (int i = 1; i < q.length; i++) {
          if (i == 1) {
          p[1] = q[0] - p[0];
          } else {
          p[i] = q[i - 1] - p[i - 2] - p[i - 1];
          }
          if (p[i] > 1 || p[i] < 0) {
          result[j] = "NONE";
          break;
          }
          result[j] += p[i];
          }
          for (int i = 0; i < p.length; i++) {
          if (i == 0 && i == p.length - 1) {
          if (p[i] != q[i]) {
          result[j] = "NONE";
          break;
          }
          } else if (i == 0) {
          if (0 + p[i] + p[i + 1] != q[i]) {
          result[j] = "NONE";
          break;
          }
          } else if (i == p.length - 1) {
          if (p[i - 1] + p[i] + 0 != q[i]) {
          result[j] = "NONE";
          break;
          }
          } else {
          if (p[i - 1] + p[i] + p[i + 1] != q[i]) {
          result[j] = "NONE";
          break;
          }
          }
          }
          }
          return result;
          }
          }  回復  更多評論
            
          <2007年10月>
          30123456
          78910111213
          14151617181920
          21222324252627
          28293031123
          45678910




          常用鏈接

          留言簿(10)

          隨筆分類(95)

          隨筆檔案(97)

          文章檔案(10)

          相冊

          J2ME技術網站

          java技術相關

          mess

          搜索

          •  

          最新評論

          閱讀排行榜

          校園夢網網絡電話,中國最優秀的網絡電話
          主站蜘蛛池模板: 白水县| 建宁县| 沭阳县| 东丽区| 孟连| 兴宁市| 平泉县| 宁乡县| 偏关县| 建始县| 外汇| 寻乌县| 上思县| 沙河市| 法库县| 抚顺县| 泊头市| 永宁县| 千阳县| 全州县| 阜南县| 齐齐哈尔市| 斗六市| 山西省| 华阴市| 郎溪县| 黔西| 米林县| 始兴县| 铁力市| 巧家县| 宿松县| 甘孜| 宁津县| 师宗县| 宁德市| 衡山县| 蓝山县| 浮山县| 安泽县| 永清县|