void

          mysql 新功能 -- 分區

          錯誤的按日期分區例子

          最直觀的方法,就是直接用年月日這種日期格式來進行常規的分區:

          CODE:
          1. mysql> create table rms (d date)
          2. -> partition by range (d)
          3. -> (partition p0 values less than ('1995-01-01'),
          4. -> partition p1 VALUES LESS THAN ('2010-01-01'));

           

          上面的例子中,就是直接用"Y-m-d"的格式來對一個table進行分區,可惜想當然往往不能奏效,會得到一個錯誤信息:

          ERROR 1064 (42000): VALUES value must be of same type as partition function near '),
          partition p1 VALUES LESS THAN ('2010-01-01'))' at line 3

          上述分區方式沒有成功,而且明顯的不經濟,老練的DBA會用整型數值來進行分區:

          CODE:
          1. mysql> CREATE TABLE part_date1
          2. -> ( c1 int default NULL,
          3. -> c2 varchar(30) default NULL,
          4. -> c3 date default NULL) engine=myisam
          5. -> partition by range (cast(date_format(c3,'%Y%m%d') as signed))
          6. -> (PARTITION p0 VALUES LESS THAN (19950101),
          7. -> PARTITION p1 VALUES LESS THAN (19960101) ,
          8. -> PARTITION p2 VALUES LESS THAN (19970101) ,
          9. -> PARTITION p3 VALUES LESS THAN (19980101) ,
          10. -> PARTITION p4 VALUES LESS THAN (19990101) ,
          11. -> PARTITION p5 VALUES LESS THAN (20000101) ,
          12. -> PARTITION p6 VALUES LESS THAN (20010101) ,
          13. -> PARTITION p7 VALUES LESS THAN (20020101) ,
          14. -> PARTITION p8 VALUES LESS THAN (20030101) ,
          15. -> PARTITION p9 VALUES LESS THAN (20040101) ,
          16. -> PARTITION p10 VALUES LESS THAN (20100101),
          17. -> PARTITION p11 VALUES LESS THAN MAXVALUE );
          18. Query OK, 0 rows affected (0.01 sec)

           

          搞定?接著往下分析

           

          CODE:
          1. mysql> explain partitions
          2. -> select count(*) from part_date1 where
          3. -> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
          4. *************************** 1. row ***************************
          5. id: 1
          6. select_type: SIMPLE
          7. table: part_date1
          8. partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11
          9. type: ALL
          10. possible_keys: NULL
          11. key: NULL
          12. key_len: NULL
          13. ref: NULL
          14. rows: 8100000
          15. Extra: Using where
          16. 1 row in set (0.00 sec)

           

          萬惡的mysql居然對上面的sql使用全表掃描,而不是按照我們的日期分區分塊查詢。原文中解釋到MYSQL的優化器并不認這種日期形式的分區,花了大量的篇幅來引誘俺走上歧路,過分。

          正確的日期分區例子

          mysql優化器支持以下兩種內置的日期函數進行分區:

          • TO_DAYS()
          • YEAR()

          看個例子:

          CODE:
          1. mysql> CREATE TABLE part_date3
          2. -> ( c1 int default NULL,
          3. -> c2 varchar(30) default NULL,
          4. -> c3 date default NULL) engine=myisam
          5. -> partition by range (to_days(c3))
          6. -> (PARTITION p0 VALUES LESS THAN (to_days('1995-01-01')),
          7. -> PARTITION p1 VALUES LESS THAN (to_days('1996-01-01')) ,
          8. -> PARTITION p2 VALUES LESS THAN (to_days('1997-01-01')) ,
          9. -> PARTITION p3 VALUES LESS THAN (to_days('1998-01-01')) ,
          10. -> PARTITION p4 VALUES LESS THAN (to_days('1999-01-01')) ,
          11. -> PARTITION p5 VALUES LESS THAN (to_days('2000-01-01')) ,
          12. -> PARTITION p6 VALUES LESS THAN (to_days('2001-01-01')) ,
          13. -> PARTITION p7 VALUES LESS THAN (to_days('2002-01-01')) ,
          14. -> PARTITION p8 VALUES LESS THAN (to_days('2003-01-01')) ,
          15. -> PARTITION p9 VALUES LESS THAN (to_days('2004-01-01')) ,
          16. -> PARTITION p10 VALUES LESS THAN (to_days('2010-01-01')),
          17. -> PARTITION p11 VALUES LESS THAN MAXVALUE );
          18. Query OK, 0 rows affected (0.00 sec)

           

          以to_days()函數分區成功,我們分析一下看看:

          CODE:
          1. mysql> explain partitions
          2. -> select count(*) from part_date3 where
          3. -> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
          4. *************************** 1. row ***************************
          5. id: 1
          6. select_type: SIMPLE
          7. table: part_date3
          8. partitions: p1
          9. type: ALL
          10. possible_keys: NULL
          11. key: NULL
          12. key_len: NULL
          13. ref: NULL
          14. rows: 808431
          15. Extra: Using where
          16. 1 row in set (0.00 sec)

           

          可以看到,mysql優化器這次不負眾望,僅僅在p1分區進行查詢。在這種情況下查詢,真的能夠帶來提升查詢效率么?下面分別對這次建立的part_date3和之前分區失敗的part_date1做一個查詢對比:

          CODE:
          1. mysql> select count(*) from part_date3 where
          2. -> c3> date '1995-01-01' and c3 <date '1995-12-31';
          3. +----------+
          4. | count(*) |
          5. +----------+
          6. | 805114 |
          7. +----------+
          8. 1 row in set (4.11 sec)
          9. mysql> select count(*) from part_date1 where
          10. -> c3> date '1995-01-01' and c3 <date '1995-12-31';
          11. +----------+
          12. | count(*) |
          13. +----------+
          14. | 805114 |
          15. +----------+
          16. 1 row in set (40.33 sec)

           

          可以看到,分區正確的話query花費時間為4秒,而分區錯誤則花費時間40秒(相當于沒有分區),效率有90%的提升!所以我們千萬要正確的使用分區功能,分區后務必用explain驗證,這樣才能獲得真正的性能提升。

          posted on 2008-07-19 12:17 void 閱讀(196) 評論(0)  編輯  收藏 所屬分類: MySql

          主站蜘蛛池模板: 汾阳市| 凉城县| 乌拉特前旗| 凤凰县| 苍梧县| 藁城市| 江源县| 山阴县| 博爱县| 许昌县| 芜湖市| 武乡县| 巴马| 贵州省| 陇川县| 怀集县| 广安市| 章丘市| 日土县| 会昌县| 江阴市| 霍城县| 吴川市| 农安县| 神农架林区| 汉源县| 贡山| 成都市| 阜新| 宁德市| 琼海市| 芮城县| 中阳县| 武宁县| 许昌市| 恩施市| 乐安县| 民权县| 台州市| 崇阳县| 阜新市|