SQL Server SQL語句調(diào)優(yōu)技巧


        www.InnovateDigital.com 整理


      通過例子和解析計(jì)劃,本文展示了在Microsoft SQL Server上提高查詢效率有效的一些技巧。在編程中有很多小提示和技巧。了解這些技巧可以擴(kuò)展你在性能優(yōu)化上的可用機(jī)能。在這部分里我們所有的例子都選擇使用Microsoft SHOWPLAN_ALL輸出,因?yàn)樗o湊并且展示典型的信息。(Sybase的查詢計(jì)劃基本與此相同,可能包含其它一些信息)大部分的例子都是要么基于PUBS數(shù)據(jù)庫,要么基于標(biāo)準(zhǔn)系統(tǒng)表的。我們?cè)赑UBS數(shù)據(jù)庫中對(duì)用到的表進(jìn)行了很大擴(kuò)充,對(duì)很多表增加了好幾萬行。

      子查詢優(yōu)化


       一條好的值得稱贊的規(guī)則是盡量用連接代替所有的子查詢。優(yōu)化器有時(shí)可以自動(dòng)將子查詢“扁平化”,并且用常規(guī)或外連接代替。但那樣也不總是有效。明確的連接對(duì)選擇表的順序和找到最可能的計(jì)劃給出了更多的選項(xiàng)。當(dāng)你優(yōu)化一個(gè)特殊查詢時(shí),了解一下是否去掉自查詢可產(chǎn)生很大的差異。

      示例

      下面查詢選擇了pubs數(shù)據(jù)庫中所有表的名字,以及每個(gè)表的聚集索引(如果存在)。如果沒有聚集索引,表名仍然顯示在列表中,在聚集索引列中顯示為虛線。兩個(gè)查詢返回同樣的結(jié)果集,但第一個(gè)使用了一個(gè)子查詢,而第二個(gè)使用一個(gè)外連接時(shí)。比較Microsoft SQL Server產(chǎn)生的查詢計(jì)劃

      SUBQUERY SOLUTION

      ----------------------

      SELECT st.stor_name AS 'Store',

      (SELECT SUM(bs.qty)

      FROM big_sales AS bs

      WHERE bs.stor_id = st.stor_id), 0)

      AS 'Books Sold'

      FROM stores AS st

      WHERE st.stor_id IN

      (SELECT DISTINCT stor_id

      FROM big_sales)

JOIN SOLUTION

----------------------

SELECT st.stor_name AS 'Store',

SUM(bs.qty) AS 'Books Sold'

FROM stores AS st

JOIN big_sales AS bs

ON bs.stor_id = st.stor_id

WHERE st.stor_id IN

(SELECT DISTINCT stor_id

FROM big_sales)

GROUP BY st.stor_name

      SUBQUERY SOLUTION

      ----------------------

      SQL Server parse and compile time:

          CPU time = 28 ms

          elapsed time = 28 ms

      SQL Server Execution Times:

          CPU time = 145 ms

          elapsed time = 145 ms

      Table 'big_sales'. Scan count 14, logical reads

      1884, physical reads 0, read-ahead reads 0.

      Table 'stores'. Scan count 12, logical reads 24,
      physical reads 0, read-ahead reads 0.

JOIN SOLUTION

----------------------

SQL Server parse and compile time:

    CPU time = 50 ms

    elapsed time = 54 ms

SQL Server Execution Times:

    CPU time = 109 ms

    elapsed time = 109 ms

Table 'big_sales'. Scan count 14, logical reads

966, physical reads 0, read-ahead reads 0.

Table 'stores'. Scan count 12, logical reads 24,
physical reads 0, read-ahead reads 0.

      不必更深探索,我們可以看到在CPU和總的實(shí)耗時(shí)間方面連接更快,僅需要子查詢方案邏輯讀的一半。此外,這兩種情況伴隨著相同的結(jié)果集,雖然排序的順序不同,這是因?yàn)檫B接查詢(由于它的GROUP BY子句)有一個(gè)隱含的ORDER BY:

      Store Books Sold

      -------------------------------------------------

      Barnum's 154125

      Bookbeat 518080

      Doc-U-Mat: Quality Laundry and Books 581130

      Eric the Read Books 76931

      Fricative Bookshop 259060

      News & Brews 161090

      (6 row(s) affected)


      Store Books Sold

      -------------------------------------------------

      Eric the Read Books 76931

      Barnum's 154125

      News & Brews 161090

      Doc-U-Mat: Quality Laundry and Books 581130

      Fricative Bookshop 259060

      Bookbeat 518080

      (6 row(s) affected)

      查看這個(gè)子查詢方法展示的查詢計(jì)劃:

      |--Compute Scalar(DEFINE:([Expr1006]=isnull([Expr1004], 0)))

      |--Nested Loops(Left Outer Join, OUTER REFERENCES:([st].[stor_id]))

      |--Nested Loops(Inner Join, OUTER REFERENCES:([big_sales].[stor_id]))

         | |--Stream Aggregate(GROUP BY:([big_sales].[stor_id]))

            | | |--Clustered Index Scan(OBJECT:([pubs].[dbo].[big_sales].

            [UPKCL_big_sales]), ORDERED FORWARD)

         | |--Clustered Index Seek(OBJECT:([pubs].[dbo].[stores].[UPK_storeid]

      AS [st]),

      SEEK:([st].[stor_id]=[big_sales].[stor_id]) ORDERED FORWARD)

       |--Stream Aggregate(DEFINE:([Expr1004]=SUM([bs].[qty])))

      |--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].

        [UPKCL_big_sales] AS [bs]),

      SEEK:([bs].[stor_id]=[st].[stor_id]) ORDERED FORWARD)

      反之,求和查詢操作我們可以得到:

      |--Stream Aggregate(GROUP BY:([st].[stor_name])

        DEFINE:([Expr1004]=SUM([partialagg1005])))

      |--Sort(ORDER BY:([st].[stor_name] ASC))

      |--Nested Loops(Left Semi Join, OUTER REFERENCES:([st].[stor_id]))

      |--Nested Loops(Inner Join, OUTER REFERENCES:([bs].[stor_id]))

        | |--Stream Aggregate(GROUP BY:([bs].[stor_id])

          DEFINE:([partialagg1005]=SUM([bs].[qty])))

             | | |--Clustered Index Scan(OBJECT:([pubs].[dbo].[big_sales].

            [UPKCL_big_sales] AS [bs]), ORDERED FORWARD)

        | |--Clustered Index Seek(OBJECT:([pubs].[dbo].[stores].

            [UPK_storeid] AS [st]),

        SEEK:([st].[stor_id]=[bs].[stor_id]) ORDERED FORWARD)

      |--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].

          [UPKCL_big_sales]),

        SEEK:([big_sales].[stor_id]=[st].[stor_id]) ORDERED FORWARD)


      使用連接是更有效的方案。它不需要額外的流聚合(stream aggregate),即子查詢所需在big_sales.qty列的求和。



 

      UNION vs UNION ALL


      無論何時(shí)盡可能用UNION ALL 代替UNION。其中的差異是因?yàn)閁NION有排除重復(fù)行并且對(duì)結(jié)果進(jìn)行排序的副作用,而UNION ALL不會(huì)做這些工作。選擇無重復(fù)行的結(jié)果需要建立臨時(shí)工作表,用它排序所有行并且在輸出之前排序。(在一個(gè)select distinct 查詢中顯示查詢計(jì)劃將發(fā)現(xiàn)存在一個(gè)流聚合,消耗百分之三十多的資源處理查詢)。當(dāng)你確切知道你得需要時(shí),可以使用UNION。但如果你估計(jì)在結(jié)果集中沒有重復(fù)的行,就使用UNION ALL吧。它只是從一個(gè)表或一個(gè)連接中選擇,然后從另一個(gè)表中選擇,附加在第一條結(jié)果集的底部。UNION ALL不需要工作表和排序(除非其它條件引起的)。在大部分情況下UNION ALL更具效率。一個(gè)有潛在危險(xiǎn)的問題是使用UNION會(huì)在數(shù)據(jù)庫中產(chǎn)生巨大的泛濫的臨時(shí)工作表。如果你期望從UNION查詢中獲得大量的結(jié)果集時(shí),這就可能發(fā)生。

      示例


      下面的查詢是選擇pubs數(shù)據(jù)庫中的表sales的所有商店的ID,也選擇表big_sales中的所有商店的ID,這個(gè)表中我們加入了 70,000多行數(shù)據(jù)。在這兩個(gè)方案間不同之處僅僅是UNION 與UNION ALL的使用比較。但在這個(gè)計(jì)劃中加入ALL關(guān)鍵字產(chǎn)生了三大不同。第一個(gè)方案中,在返回結(jié)果集給客戶端之前需要流聚合并且排序結(jié)果。第二個(gè)查詢更有效率,特別是對(duì)大表。在這個(gè)例子中兩個(gè)查詢返回同樣的結(jié)果集,雖然順序不同。在我們的測(cè)試中有兩個(gè)臨時(shí)表。你的結(jié)果可能會(huì)稍有差異。
      UNION SOLUTION

      -----------------------

      UNION ALL SOLUTION

      -----------------------

      SELECT stor_id FROM big_sales

      UNION

      SELECT stor_id FROM sales

      ----------------------------

      SELECT stor_id FROM big_sales

      UNION ALL

      SELECT stor_id FROM sales

      ----------------------------

      |--Merge Join(Union)

       |--Stream Aggregate(GROUP BY:

      ([big_sales].[stor_id]))

      | |--Clustered Index Scan

      (OBJECT:([pubs].[dbo].

      [big_sales].

      [UPKCL_big_sales]),

      ORDERED FORWARD)

      |--Stream Aggregate(GROUP BY:

      ([sales].[stor_id]))

       |--Clustered Index Scan

       (OBJECT:([pubs].[dbo].

       [sales].[UPKCL_sales]),

       ORDERED FORWARD)

      |--Concatenation

      |--Index Scan

      (OBJECT:([pubs].[dbo].

       [big_sales].[ndx_sales_ttlID]))

      |--Index Scan

      (OBJECT:([pubs].[dbo].

      [sales].[titleidind]))

      UNION SOLUTION

      -----------------------

      Table 'sales'. Scan count 1, logical

      reads 2, physical reads 0,

      read-ahead reads 0.

      Table 'big_sales'. Scan count 1,

      logical

      reads 463, physical reads 0,

      read-ahead reads 0.

      UNION ALL SOLUTION

      -----------------------

      Table 'sales'. Scan count 1, logical

      reads 1, physical reads 0,

      read-ahead reads 0.

      Table 'big_sales'. Scan count 1,

      logical

      reads 224, physical reads 0,

      read-ahead reads 0.


      雖然在這個(gè)例子的結(jié)果集是可互換的,你可以看到UNION ALL語句比UNION語句少消耗一半的資源。所以應(yīng)當(dāng)預(yù)料你的結(jié)果集并且確定已經(jīng)沒有重復(fù)時(shí),使用UNION ALL子句。



      函數(shù)和表達(dá)式約束索引


      當(dāng)你在索引列上使用內(nèi)置的函數(shù)或表達(dá)式時(shí),優(yōu)化器不能使用這些列的索引。盡量重寫這些條件,在表達(dá)式中不要包含索引列。

      示例

      你應(yīng)該幫助SQL Server移除任何在索引數(shù)值列周圍的表達(dá)式。下面的查詢是從表jobs通過唯一的聚集索引的唯一鍵值選擇出的一行。如果你在這個(gè)列上使用表達(dá)式,這個(gè)索引就不起作用了。但一旦你將條件’job_id-2=0’ 該成‘job_id=2’,優(yōu)化器將在聚集索引上執(zhí)行seek操作。


      QUERY WITH SUPPRESSED INDEX

      -----------------------

      OPTIMIZED QUERY USING INDEX

      -----------------------

      SELECT *

      FROM jobs

      WHERE (job_id-2) = 0

      SELECT *

      FROM jobs

      WHERE job_id = 2

      |--Clustered Index Scan(OBJECT:

      ([pubs].[dbo].[jobs].

      [PK__jobs__117F9D94]),

      WHERE:(Convert([jobs].[job_id])-

      2=0))

      |--Clustered Index Seek(OBJECT:

      ([pubs].[dbo].[jobs].

      [PK__jobs__117F9D94]),

      SEEK:([jobs].[job_id]=Convert([@1]))

      ORDERED FORWARD)

      Note that a SEEK is much better than a SCAN,

      as in the previous query.


      下面表中列出了多種不同類型查詢示例,其被禁止使用列索引,同時(shí)給出改寫的方法,以獲得更優(yōu)的性能。



      QUERY WITH SUPPRESSED INDEX

      ---------------------------------------

      OPTIMIZED QUERY USING INDEX

      --------------------------------------

      DECLARE @job_id VARCHAR(5)

      SELECT @job_id = ‘2’

      SELECT *

      FROM jobs

      WHERE CONVERT( VARCHAR(5),

      job_id ) = @job_id

      -------------------------------

      DECLARE @job_id VARCHAR(5)

      SELECT @job_id = ‘2’

      SELECT *

      FROM jobs

      WHERE job_id = CONVERT(

      SMALLINT, @job_id )

      -------------------------------

      SELECT *

      FROM authors

      WHERE au_fname + ' ' + au_lname

      = 'Johnson White'

      -------------------------------

      SELECT *

      FROM authors

      WHERE au_fname = 'Johnson'

      AND au_lname = 'White'

      -------------------------------

      SELECT *

      FROM authors

      WHERE SUBSTRING( au_lname, 1, 2 ) = 'Wh'

      -------------------------------

      SELECT *

      FROM authors

      WHERE au_lname LIKE 'Wh%'

      -------------------------------

      CREATE INDEX employee_hire_date

      ON employee ( hire_date )

      GO

      -- Get all employees hired

      -- in the 1st quarter of 1990:

      SELECT *

      FROM employee

      WHERE DATEPART( year, hire_date ) = 1990

      AND DATEPART( quarter, hire_date ) = 1

      -------------------------------

      CREATE INDEX employee_hire_date

      ON employee ( hire_date )

      GO

      -- Get all employees hired

      -- in the 1st quarter of 1990:

      SELECT *

      FROM employee

      WHERE hire_date >= ‘1/1/1990’

      AND hire_date < ‘4/1/1990’

      -------------------------------

      -- Suppose that hire_date may

      -- contain time other than 12AM

      -- Who was hired on 2/21/1990?

      SELECT *

      FROM employee

      WHERE CONVERT( CHAR(10),

      hire_date, 101 ) = ‘2/21/1990’

      -- Suppose that hire_date may

      -- contain time other than 12AM

      -- Who was hired on 2/21/1990?

      SELECT *

      FROM employee

      WHERE hire_date >= ‘2/21/1990’

      AND hire_date < ‘2/22/1990’




      SET NOCOUNT ON


      使用SET NOCOUNT ON 提高T-SQL代碼速度的現(xiàn)象使SQL Server開發(fā)者和數(shù)據(jù)庫系統(tǒng)管理者驚訝難解。你可能已經(jīng)注意到成功的查詢返回了關(guān)于受影響的行數(shù)的系統(tǒng)信息。在很多情況下,你不需要這些信息。這個(gè) SET NOCOUNT ON命令允許你禁止所有在你的會(huì)話事務(wù)中的子查詢的信息,直到你發(fā)出SET NOCOUNT OFF。
      這個(gè)選項(xiàng)不只在于其輸出的裝飾效果。它減少了從服務(wù)器端到客戶端傳遞的信息量。因此,它幫助降低了網(wǎng)絡(luò)通信量并提高了你的事務(wù)整體響應(yīng)時(shí)間。傳遞單個(gè)信息的時(shí)間可以忽略,但考慮到這種情況,一個(gè)腳本在一個(gè)循環(huán)里執(zhí)行一些查詢并且發(fā)送好幾千字節(jié)無用的信息給用戶。

      為做個(gè)例子,一個(gè)文件含T-SQL批處理,其在big_sales表插入了9999行。


      -- Assumes the existence of a table called BIG_SALES, a copy of pubs..sales

      SET NOCOUNT ON

      DECLARE @separator VARCHAR(25),

      @message VARCHAR(25),

      @counter INT,

      @ord_nbr VARCHAR(20),

      @order_date DATETIME,

      @store_nbr INT,

      @qty_sold INT,

      @terms VARCHAR(12),

      @title CHAR(6),

      @starttime DATETIME

      SET @STARTTIME = GETDATE()

      SELECT @counter = 0,

      @separator = REPLICATE( '-', 25 )

      WHILE @counter < 9999

      BEGIN

      SET @counter = @counter + 1

      SET @ord_nbr = 'Y' + CAST(@counter AS VARCHAR(5))

      SET @order_date = DATEADD(hour, (@counter * 8), 'Jan 01 1999')

      SET @store_nbr =

      CASE WHEN @counter < 999 THEN '6380'

      WHEN @counter BETWEEN 1000 AND 2999 THEN '7066'

      WHEN @counter BETWEEN 3000 AND 3999 THEN '7067'

      WHEN @counter BETWEEN 4000 AND 6999 THEN '7131'

      WHEN @counter BETWEEN 7000 AND 7999 THEN '7896'

      WHEN @counter BETWEEN 8000 AND 9999 THEN '8042'

      ELSE '6380'

      END

      SET @qty_sold =

      CASE WHEN @counter BETWEEN 0 AND 2999 THEN 11

      WHEN @counter BETWEEN 3000 AND 5999 THEN 23

      ELSE 37

      END

      SET @terms =

      CASE WHEN @counter BETWEEN 0 AND 2999 THEN 'Net 30'

      WHEN @counter BETWEEN 3000 AND 5999 THEN 'Net 60'

      ELSE 'On Invoice'

      END

      -- SET @title = (SELECT title_id FROM big_sales WHERE qty = (SELECT MAX(qty)

      FROM big_sales))

      SET @title =

      CASE WHEN @counter < 999 THEN 'MC2222'

      WHEN @counter BETWEEN 1000 AND 1999 THEN 'MC2222'

      WHEN @counter BETWEEN 2000 AND 3999 THEN 'MC3026'

      WHEN @counter BETWEEN 4000 AND 5999 THEN 'PS2106'

      WHEN @counter BETWEEN 6000 AND 6999 THEN 'PS7777'

      WHEN @counter BETWEEN 7000 AND 7999 THEN 'TC3218'

      ELSE 'PS1372'

      END

      -- PRINT @separator

      -- SELECT @message = STR( @counter, 10 ) -- + STR( SQRT( CONVERT( FLOAT,

      @counter ) ), 10, 4 )

      -- PRINT @message

      BEGIN TRAN

      INSERT INTO [pubs].[dbo].[big_sales]([stor_id], [ord_num], [ord_date],

      [qty], [payterms], [title_id])

      VALUES(@store_nbr, CAST(@ord_nbr AS CHAR(5)), @order_date, @qty_sold,

      @terms, @title)

      COMMIT TRAN

      END

      SET @message = CAST(DATEDIFF(ms, @starttime, GETDATE()) AS VARCHAR(20))

      PRINT @message

      /*

      TRUNCATE table big_sales

      INSERT INTO big_sales

      SELECT * FROM sales

      SELECT title_id, sum(qty)

      FROM big_sales

      group by title_id

      order by sum(qty)

      SELECT * FROM big_sales

      */


      當(dāng)帶SET NOCOUNT OFF命令運(yùn)行,實(shí)耗時(shí)間是5176毫秒。當(dāng)帶SET NOCOUNT ON命令運(yùn)行,實(shí)耗時(shí)間是1620毫秒。如果不需要輸出中的行數(shù)信息,考慮在每一個(gè)存儲(chǔ)過程和腳本開始時(shí)增加SET NOCOUNT ON 命令將。

      TOP 和 SET ROWCOUNT


      SELECT 語句中的TOP子句限制單個(gè)查詢返回的行數(shù),而SET ROWCOUNT限制所有后續(xù)查詢影響的行數(shù)。在很多編程任務(wù)中這些命令提供了高效率。
      SET ROWCOUNT在SELECT,INSERT,UPDATE OR DELETE語句中設(shè)置可以被影響的最大行數(shù)。這些設(shè)置在命令執(zhí)行時(shí)馬上生效并且只影響當(dāng)前的會(huì)話。為了移除這個(gè)限制執(zhí)行SET ROWCOUNT 0。
一些實(shí)際的任務(wù)用TOP or SET ROWCOUNT比用標(biāo)準(zhǔn)的SQL命令對(duì)編程是更有效率的。讓我們?cè)趲讉€(gè)例子中證明:


      TOP n

      在幾乎所有的數(shù)據(jù)庫中最流行的一個(gè)查詢是請(qǐng)求一個(gè)列表中的前N項(xiàng)。在 pubs數(shù)據(jù)庫案例中,我們可以查找銷售最好CD的前五項(xiàng)。比較用TOP,SET ROWCOUNT和使用ANSI SQL的三種方案。


      純 ANSI SQL:

      Select title,ytd_sales

      From titles a

      Where (select count(*)

      From titles b

      Where b.ytd_sales>a.ytd_sales

      )<5

      Order by ytd_sales DESC

      這個(gè)純ANSI SQL方案執(zhí)行一個(gè)效率可能很低的關(guān)聯(lián)子查詢,特別的在這個(gè)例子中,在ytd_sales上沒有索引支持。另外,這個(gè)純的標(biāo)準(zhǔn)SQL命令沒有過濾掉在ytd_sales的空值,也沒有區(qū)別多個(gè)CD間有關(guān)聯(lián)的情況。

 


      使用 SET ROWCOUNT:

      SET ROWCOUNT 5

      SELECT title, ytd_sales

      FROM titles

      ORDER BY ytd_sales DESC

      SET ROWCOUNT 0

      使用 TOP n:

      SELECT TOP 5 title, ytd_sales

      FROM titles

      ORDER BY ytd_sales DESC

      第二個(gè)方案使用SET ROWCOUNT來停止SELECT查詢,而第三個(gè)方案是當(dāng)它找到前五行時(shí)用TOP n來停止。在這種情況下,在獲得結(jié)果之前我們也要有一個(gè)ORDER BY子句強(qiáng)制對(duì)整個(gè)表進(jìn)行排序。兩個(gè)查詢的查詢計(jì)劃實(shí)際上是一樣的。然而,TOP優(yōu)于SET ROWCOUNT的關(guān)鍵點(diǎn)是SET必須處理ORDER BY子句所需的工作表,而TOP 不用。


      在一個(gè)大表上,我們可以在ytd_sales上創(chuàng)建一個(gè)索引以避免排序。查詢將使用該索引找到前5行并停止。與第一個(gè)方案相比較,其掃描了整個(gè)表,并對(duì)每一行執(zhí)行了一個(gè)關(guān)聯(lián)子查詢。在小表上,性能的差異是很小的。但是在一個(gè)大表上,第一個(gè)方案的處理時(shí)間可能是數(shù)個(gè)小時(shí),而后兩個(gè)方法是數(shù)秒。


      當(dāng)確定查詢需要時(shí),請(qǐng)考慮是否只需要其中幾行,如果是,使用TOP子句將節(jié)約大量時(shí)間。