引言

  Java的堆是一個運行時數(shù)據(jù)區(qū),類的實例(對象)從中分配空間。Java虛擬機(JVM)的堆中儲存著正在運行的應用程序所建立的所有對象,這些對象通過new、newarray、anewarray和multianewarray等指令建立,但是它們不需要程序代碼來顯式地釋放。一般來說,堆的是由垃圾回收來負責的,盡管JVM規(guī)范并不要求特殊的垃圾回收技術(shù),甚至根本就不需要垃圾回收,但是由于內(nèi)存的有限性,JVM在實現(xiàn)的時候都有一個由垃圾回收所管理的堆。垃圾回收是一種動態(tài)存儲管理技術(shù),它自動地釋放不再被程序引用的對象,按照特定的垃圾收集算法來實現(xiàn)資源自動回收的功能。

  垃圾收集的意義

  在C++中,對象所占的內(nèi)存在程序結(jié)束運行之前一直被占用,在明確釋放之前不能分配給其它對象;而在Java中,當沒有對象引用指向原先分配給某個對象的內(nèi)存時,該內(nèi)存便成為垃圾。JVM的一個系統(tǒng)級線程會自動釋放該內(nèi)存塊。垃圾收集意味著程序不再需要的對象是“無用信息”,這些信息將被丟棄。當一個對象不再被引用的時候,內(nèi)存回收它占領(lǐng)的空間,以便空間被后來的新對象使用。事實上,除了釋放沒用的對象,垃圾收集也可以清除內(nèi)存記錄碎片。由于創(chuàng)建對象和垃圾收集器釋放丟棄對象所占的內(nèi)存空間,內(nèi)存會出現(xiàn)碎片。碎片是分配給對象的內(nèi)存塊之間的空閑內(nèi)存洞。碎片整理將所占用的堆內(nèi)存移到堆的一端,JVM將整理出的內(nèi)存分配給新的對象。

  垃圾收集能自動釋放內(nèi)存空間,減輕編程的負擔。這使Java 虛擬機具有一些優(yōu)點。首先,它能使編程效率提高。在沒有垃圾收集機制的時候,可能要花許多時間來解決一個難懂的存儲器問題。在用Java語言編程的時候,靠垃圾收集機制可大大縮短時間。其次是它保護程序的完整性, 垃圾收集是Java語言安全性策略的一個重要部份。

  垃圾收集的一個潛在的缺點是它的開銷影響程序性能。Java虛擬機必須追蹤運行程序中有用的對象,而且最終釋放沒用的對象。這一個過程需要花費處理器的時間。其次垃圾收集算法的不完備性,早先采用的某些垃圾收集算法就不能保證100%收集到所有的廢棄內(nèi)存。當然隨著垃圾收集算法的不斷改進以及軟硬件運行效率的不斷提升,這些問題都可以迎刃而解。

  垃圾收集的算法分析

  Java語言規(guī)范沒有明確地說明JVM使用哪種垃圾回收算法,但是任何一種垃圾收集算法一般要做2件基本的事情:(1)發(fā)現(xiàn)無用信息對象;(2)回收被無用對象占用的內(nèi)存空間,使該空間可被程序再次使用。

  大多數(shù)垃圾回收算法使用了根集(root set)這個概念;所謂根集就量正在執(zhí)行的Java程序可以訪問的引用變量的集合(包括局部變量、參數(shù)、類變量),程序可以使用引用變量訪問對象的屬性和調(diào)用對象的方法。垃圾收集首選需要確定從根開始哪些是可達的和哪些是不可達的,從根集可達的對象都是活動對象,它們不能作為垃圾被回收,這也包括從根集間接可達的對象。而根集通過任意路徑不可達的對象符合垃圾收集的條件,應該被回收。下面介紹幾個常用的算法。

  1、 引用計數(shù)法(Reference Counting Collector)

  引用計數(shù)法是唯一沒有使用根集的垃圾回收的法,該算法使用引用計數(shù)器來區(qū)分存活對象和不再使用的對象。一般來說,堆中的每個對象對應一個引用計數(shù)器。當每一次創(chuàng)建一個對象并賦給一個變量時,引用計數(shù)器置為1。當對象被賦給任意變量時,引用計數(shù)器每次加1當對象出了作用域后(該對象丟棄不再使用),引用計數(shù)器減1,一旦引用計數(shù)器為0,對象就滿足了垃圾收集的條件。

  基于引用計數(shù)器的垃圾收集器運行較快,不會長時間中斷程序執(zhí)行,適宜地必須 實時運行的程序。但引用計數(shù)器增加了程序執(zhí)行的開銷,因為每次對象賦給新的變量,計數(shù)器加1,而每次現(xiàn)有對象出了作用域生,計數(shù)器減1。

  2、tracing算法(Tracing Collector)

  tracing算法是為了解決引用計數(shù)法的問題而提出,它使用了根集的概念?;趖racing算法的垃圾收集器從根集開始掃描,識別出哪些對象可達,哪些對象不可達,并用某種方式標記可達對象,例如對每個可達對象設置一個或多個位。在掃描識別過程中,基于tracing算法的垃圾收集也稱為標記和清除(mark-and-sweep)垃圾收集器。

  3、compacting算法(Compacting Collector)

  為了解決堆碎片問題,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的過程中,算法將所有的對象移到堆的一端,堆的另一端就變成了一個相鄰的空閑內(nèi)存區(qū),收集器會對它移動的所有對象的所有引用進行更新,使得這些引用在新的位置能識別原來的對象。在基于Compacting算法的收集器的實現(xiàn)中,一般增加句柄和句柄表。

  4、copying算法(Coping Collector)

  該算法的提出是為了克服句柄的開銷和解決堆碎片的垃圾回收。它開始時把堆分成 一個對象 面和多個空閑面,程序從對象面為對象分配空間,當對象滿了,基于coping算法的垃圾 收集就從根集中掃描活動對象,并將每個活動對象復制到空閑面(使得活動對象所占的內(nèi)存之間沒有空閑洞),這樣空閑面變成了對象面,原來的對象面變成了空閑面,程序會在新的對象面中分配內(nèi)存。

  一種典型的基于coping算法的垃圾回收是stop-and-copy算法,它將堆分成對象面和空閑區(qū)域面,在對象面與空閑區(qū)域面的切換過程中,程序暫停執(zhí)行。

  5、generation算法(Generational Collector)

  stop-and-copy垃圾收集器的一個缺陷是收集器必須復制所有的活動對象,這增加了程序等待時間,這是coping算法低效的原因。在程序設計中有這樣的規(guī)律:多數(shù)對象存在的時間比較短,少數(shù)的存在時間比較長。因此,generation算法將堆分成兩個或多個,每個子堆作為對象的一代 (generation)。由于多數(shù)對象存在的時間比較短,隨著程序丟棄不使用的對象,垃圾收集器將從最年輕的子堆中收集這些對象。在分代式的垃圾收集器運行后,上次運行存活下來的對象移到下一最高代的子堆中,由于老一代的子堆不會經(jīng)常被回收,因而節(jié)省了時間。

  6、adaptive算法(Adaptive Collector)

  在特定的情況下,一些垃圾收集算法會優(yōu)于其它算法。基于Adaptive算法的垃圾收集器就是監(jiān)控當前堆的使用情況,并將選擇適當算法的垃圾收集器。