posts - 73,  comments - 55,  trackbacks - 0

          February 18, 2005

          If anything about current interaction design can be called “glamorous,” it’s creating Web applications. After all, when was the last time you heard someone rave about the interaction design of a product that wasn’t on the Web? (Okay, besides the iPod.) All the cool, innovative new projects are online.

          Despite this, Web interaction designers can’t help but feel a little envious of our colleagues who create desktop software. Desktop applications have a richness and responsiveness that has seemed out of reach on the Web. The same simplicity that enabled the Web’s rapid proliferation also creates a gap between the experiences we can provide and the experiences users can get from a desktop application.

          That gap is closing. Take a look at Google Suggest. Watch the way the suggested terms update as you type, almost instantly. Now look at Google Maps. Zoom in. Use your cursor to grab the map and scroll around a bit. Again, everything happens almost instantly, with no waiting for pages to reload.

          Google Suggest and Google Maps are two examples of a new approach to web applications that we at Adaptive Path have been calling Ajax. The name is shorthand for Asynchronous JavaScript + XML, and it represents a fundamental shift in what’s possible on the Web.

          Defining Ajax

          Ajax isn’t a technology. It’s really several technologies, each flourishing in its own right, coming together in powerful new ways. Ajax incorporates:

          The classic web application model works like this: Most user actions in the interface trigger an HTTP request back to a web server. The server does some processing — retrieving data, crunching numbers, talking to various legacy systems — and then returns an HTML page to the client. It’s a model adapted from the Web’s original use as a hypertext medium, but as fans of The Elements of User Experience know, what makes the Web good for hypertext doesn’t necessarily make it good for software applications.

          Ajax Overview 1

          Figure 1: The traditional model for web applications (left) compared to the Ajax model (right).

          This approach makes a lot of technical sense, but it doesn’t make for a great user experience. While the server is doing its thing, what’s the user doing? That’s right, waiting. And at every step in a task, the user waits some more.

          Obviously, if we were designing the Web from scratch for applications, we wouldn’t make users wait around. Once an interface is loaded, why should the user interaction come to a halt every time the application needs something from the server? In fact, why should the user see the application go to the server at all?

          How Ajax is Different

          An Ajax application eliminates the start-stop-start-stop nature of interaction on the Web by introducing an intermediary — an Ajax engine — between the user and the server. It seems like adding a layer to the application would make it less responsive, but the opposite is true.

          Instead of loading a webpage, at the start of the session, the browser loads an Ajax engine — written in JavaScript and usually tucked away in a hidden frame. This engine is responsible for both rendering the interface the user sees and communicating with the server on the user’s behalf. The Ajax engine allows the user’s interaction with the application to happen asynchronously — independent of communication with the server. So the user is never staring at a blank browser window and an hourglass icon, waiting around for the server to do something.

          Ajax Overview 2

          Figure 2: The synchronous interaction pattern of a traditional web application (top) compared with the asynchronous pattern of an Ajax application (bottom).

          Every user action that normally would generate an HTTP request takes the form of a JavaScript call to the Ajax engine instead. Any response to a user action that doesn’t require a trip back to the server — such as simple data validation, editing data in memory, and even some navigation — the engine handles on its own. If the engine needs something from the server in order to respond — if it’s submitting data for processing, loading additional interface code, or retrieving new data — the engine makes those requests asynchronously, usually using XML, without stalling a user’s interaction with the application.

          Who’s Using Ajax

          Google is making a huge investment in developing the Ajax approach. All of the major products Google has introduced over the last year — Orkut, Gmail, the latest beta version of Google Groups, Google Suggest, and Google Maps — are Ajax applications. (For more on the technical nuts and bolts of these Ajax implementations, check out these excellent analyses of Gmail, Google Suggest, and Google Maps.) Others are following suit: many of the features that people love in Flickr depend on Ajax, and Amazon’s A9.com search engine applies similar techniques.

          These projects demonstrate that Ajax is not only technically sound, but also practical for real-world applications. This isn’t another technology that only works in a laboratory. And Ajax applications can be any size, from the very simple, single-function Google Suggest to the very complex and sophisticated Google Maps.

          At Adaptive Path, we’ve been doing our own work with Ajax over the last several months, and we’re realizing we’ve only scratched the surface of the rich interaction and responsiveness that Ajax applications can provide. Ajax is an important development for Web applications, and its importance is only going to grow. And because there are so many developers out there who already know how to use these technologies, we expect to see many more organizations following Google’s lead in reaping the competitive advantage Ajax provides.

          Moving Forward

          The biggest challenges in creating Ajax applications are not technical. The core Ajax technologies are mature, stable, and well understood. Instead, the challenges are for the designers of these applications: to forget what we think we know about the limitations of the Web, and begin to imagine a wider, richer range of possibilities.

          It’s going to be fun.

          posted on 2006-08-07 10:23 保爾任 閱讀(222) 評(píng)論(0)  編輯  收藏

          只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。


          網(wǎng)站導(dǎo)航:
           

          <2025年5月>
          27282930123
          45678910
          11121314151617
          18192021222324
          25262728293031
          1234567

          常用鏈接

          留言簿(4)

          隨筆分類

          隨筆檔案

          文章分類

          文章檔案

          搜索

          •  

          最新評(píng)論

          閱讀排行榜

          評(píng)論排行榜

          主站蜘蛛池模板: 施甸县| 阿坝县| 阜康市| 平南县| 嘉荫县| 安阳市| 慈溪市| 永修县| 五大连池市| 吴川市| 凤台县| 景宁| 镇康县| 遂川县| 克东县| 苗栗县| 临湘市| 称多县| 芮城县| 天等县| 克东县| 清新县| 且末县| 八宿县| 大丰市| 潼南县| 玉田县| 柞水县| 遵化市| 仪征市| 扶沟县| 营口市| 巴林左旗| 民县| 凤凰县| 长沙县| 集安市| 改则县| 莱阳市| 诸暨市| 霍林郭勒市|