??xml version="1.0" encoding="utf-8" standalone="yes"?>
和void ListInsert(LNode Pre, LNode X, LinkList L)Ӟ通常把结点P的前驱P(pn)re作ؓ(f)实参。而且q两个函数通常与函数LNode FindPrefious(ElemType X, LinkList L)一起用,卛_查找l点Q再执行插入或删除操作?
以上操作为线性单链表的最基本的操作,其他操作可以是上q操作的l合。如Q执行“在U性表L中寻扑րgؓ(f)X的结点,q删除之”操作时Q可先执行LNode FindPrefious(ElemType X, LinkList L)Q再执行void ListDelete(LNode Pre)? 又如Q执行“把一个gؓ(f)X的新l点插入l点P之前”,可先执行LNode FindPrefious(ElemType X, LinkList L)Q再执行LinkList NewLNode((ElemType X)Q最后执行void ListInsert(LNode Pre, LNode S)?
我特意向大家推荐q种”坚持用头l点“和“锁定前q点”的设计Ҏ(gu)Q这正是我和一般书本上有着不同理解的地斏V有些书上的例程有时讄一个头l点Q还有些Ҏ(gu)׃使用头结点,也许是他们认为头l点占地方ŞQ但我认Zؓ(f)?jin)更方便的编E实现我们的意图和更好的~程风格---主要指代码清晰易读,我再一ơ吐血推荐我的设计Ҏ(gu)。因U设计方法就像一把万能钥?--也许有些夸张?jin),呵呵Q一般书上的例程在删除或插入l点Ӟ要分别讨论链表头Q链表中和链表尾三种不同的情况,采取不同的操作;而我上面所列的”删除“和”插入“操作可以全面搞定对链表中Q意位|的l点Q头l点除外Q插入和删除功能。(除了(jin)”把新结Ҏ(gu)入到链表䏀,但这可以l合执行LNode IsLast(LinkList L)和void ListInsert(LNode Pre, LNode S)Q?
举一个实际的例子。已知集合A={1Q?Q?Q?Q?}QB={3Q?Q?Q?Q?Q?Q?Q?1}Q求集合A和B的交集?
法思\是先把集合A和B分别存入两个单向链表LA和LB中,以LA的结点P为研I对象,遍历LBQ看是否有与其同值的l点Q根据情况判断是否执行删除结点P的指令。最后得到的LA是集合A和B的交集?
具体的实现如下所C,因ؓ(f)函数部分已经包含在“线性表的单链表基本操作的算法实现“中Q所以不做重复,只把其他的部分列出来。程序经q测试,可以q行?
#include
#include
#include
(tng)
typedef int ElemType;
typedef struct Node{
(tng) (tng) (tng) ElemType data;
(tng) (tng) (tng) struct Node *next;
} *LNode, *LinkList;
LinkList CreateList(ElemType a[], ElemType len);//用来构造一个链?
。。?/其他函数声明
int main(void)
{
(tng) (tng) LNode LA, LB, Pre,Flag;
(tng) (tng) ElemType X, A[5]={1,2,3,4,5}, B[8]={3,4,5,6,7,8,9,11};
(tng) (tng) //把集合A和B分别存入两个单向链表LA和LB?
(tng) (tng) LA = CreateList(A, 5);
(tng) (tng) LB = CreateList(B, 8);
(tng) (tng) //以LA的结点P为研I对象,遍历LBQ看是否有与其同值的l点Q根据情况判断是否执行删除结点P的指?
(tng) (tng) Pre = LA;
(tng) (tng) while(Pre->next)
(tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Pre->next->data;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) Flag = FindPrefious(X, LB);
(tng) (tng) (tng) (tng) (tng) (tng) if(!Flag)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) ListDelete(Pre);
(tng) (tng) (tng) (tng) (tng) (tng) (tng) else
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) Pre = Pre->next; (tng)
(tng) (tng) (tng) }
(tng) (tng) (tng) //输出集合A和B的交?
(tng) (tng) Pre = LA;
(tng) (tng) printf("集合A和B的交?\n");
(tng) (tng) (tng) (tng) if(!Pre->next)
(tng) (tng) (tng) (tng) (tng) printf("交集为空?");
(tng) (tng) else (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) while(Pre->next)
(tng) (tng) (tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Pre->next->data;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) printf("%2d", X);
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) Pre = Pre->next; (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) }
(tng) (tng)
(tng) (tng) (tng) (tng) system("pause"); (tng) (tng) (tng) (tng)
(tng) (tng) return 0;
}
(tng)
LinkList CreateList(ElemType a[], ElemType len)//用来构造一个链?
{
(tng) (tng) (tng) LNode L, S;
(tng) (tng) (tng) ElemType i;
(tng) (tng) (tng) (tng)
(tng) (tng) (tng) L = InitList(); //构造一个空的线性表
(tng) (tng) (tng) for(i=0; i
(tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) S = NewLNode(a[i]); //构造一个数据域为a[i]的新l点
(tng) (tng) (tng) (tng) (tng) (tng) ListInsert(L, S); //把新l点S插到头结点后面?
(tng) (tng) (tng) }
(tng) (tng) (tng) return L;
} (tng) (tng)
动态链表我们就先讲到这里,实际上更让我感兴的是静(rn)态链表。这U无需指针而有能够实现链表功能的结构,对于那些不支持指针的高语言来说Q无疑是个巨大的音。它既可以像数组一样随机存取数?--它本w就是一个数l,又具有链表方便地实现插入和删除结点的功能Q由于它是模拟的“动态分配空间”,实际上它的存储空间是ql一ơ性分配好?jin)的Q这样在“动态分配空间”的时候,不需要内存管理程序,如果q行的Find函数相对较少Q它实现的速度比动态链表要快很多;此外Q他很少出现因ؓ(f)内存I间不够的原因而导致程序不正常l止的情况,因ؓ(f)它的I间一早就分配好了(jin)Q只要不出链表的最大长度,I间p够。因此它真可以称的上是一个“宝贝”?
在链表的指针实现Q即动态链表)(j)中,有两个重要的特点Q? 1.数据存储在一l结构体?每个l构包含有数据以?qing)指向下一个结构体的指? 2.一个新的结构体可以通过调用malloc()而从pȝ全局内存(global memory)得到,q可以通过调用 free()而被释放. ?rn)态链表必能够模仿实现这两条Ҏ(gu)?满条g1的逻辑Ҏ(gu)是要有一个全局的结构体数组.对于该数l中的Q何单?元素),其数l下标可以用来表CZ个地址(l点).也就是说数组元素(l构?包含有数据以?qing)指向下一个结构体的游?--即下一个结点的数组下标.可以建立不同的链表,但实际上每一个链表都是结构体数组一部分元素的集合? Z(jin)模拟条g2Q我们需要徏立一个“模拟空间分配站”,它是一个规模较大的l构体数l。我们可以徏立不同的链表Q实际上我们创造的每一个链表都来自q个“模拟空间分配站”,每一个结炚w是该l构体数l的元素Q每一个链表都是结构体数组一部分元素的集合? 它的cd声明和基本操作如下表所C:(x) //-------------------U性表的静(rn)态单链表存储l构------------------------ #define MAXSIZE 1000//链表的最大长? typedef int Position; typedef int SLink; typedef struct Node{ (tng) (tng) (tng) ElemType data; (tng) (tng) (tng) Position next; } SLinkList[MAXSIZE]; //-------------------U性表的静(rn)态单链表基本操作------------------------ static void InitSpace_SL(SLinkList Space);//构造一个“模拟空间分配站?为全局变量 //初始条gQ“模拟空间分配站”已存在。操作结果:(x)"动?分配I间 l结点P (tng) static Position malloc_SL(void); //初始条gQ“模拟空间分配站”已存在。操作结果:(x)释放l点P 的空?到“模拟空间分配站? static void free_SL(Position P); Position MakeEmpty(SLink L);//初始条gQ线性表L已存在?操作l果Q将U性表L重置为空表? Position InitList(void); //构造一个空的线性表 void DestroyList(SLink L);//初始条gQ线性表L已存在?操作l果Q销毁线性表L? int IsEmpty(SLink L);//初始条gQ线性表L已存在?操作l果Q判断线性表是否为空表? int SListLength(SLink L);//初始条gQ线性表L已存在?操作l果Q返回线性表Ll点的个数? Position NewSLNode(ElemType X);//构造一个数据域为X的新l点 //初始条gQ线性表L和结点P已存在。操作结果:(x)判断P是否为链表L的结? int LContaiP(SLink L, Position P); int IsLast(Position P); //初始条gQ结点P已存在?操作l果Q判断P是否为尾l点 Position FindPrefious(ElemType X, SLink L); //初始条gQ线性表L已存在。操作结果:(x)在线性表L中寻扑րgؓ(f)X的结点,若找到则q回该结点的前驱Q否则返回NULL? void SListDelete(Position Pre);//初始条gQ线性表L中结点P已找到?操作l果Q删除该l点? void SListInsert(Position Pre, Position S); //初始条gQ线性表L中结点P已找刎ͼ新结点S已构造。操作结果:(x)在该l点之前插入新结点X? //-------------------U性表的静(rn)态单链表基本操作的算法实?----------------------- static void InitSpace_SL(SLinkList Space)//构造一个“模拟空间分配站?为全局变量 { (tng) (tng) (tng) int i; (tng) (tng) (tng) (tng) (tng) (tng) for(i=0; i<MAXSIZE-1; i++) //每个l点的游标值均表示其后l结点的数组下标 (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) Space[i].next = i+1; (tng) (tng) (tng) (tng) (tng) (tng) Space[i].data = i+1; (tng) (tng) (tng) } (tng) (tng) (tng) Space[MAXSIZE-1].next = 0;//点的后l点下标?Q即NULL } //初始条gQ“模拟空间分配站”已存在。操作结果:(x)"动?分配I间 l结点P (tng) static Position malloc_SL(void) { (tng) (tng) (tng) Position P; (tng) (tng) (tng) (tng) (tng) (tng) P = Space[0].next; (tng) //每一个结点的I间均从Space[0]q里取得Q当前被取走的结点乃Space[0]的直接后l? (tng) (tng) (tng) Space[0].next = Space[P].next; //为Pl点分配I间Q实际上相当于出栈,Space[0]x(chng)? (tng) (tng) (tng) return P; (tng) (tng) //把结点P从“模拟空间分配站”中取出?Qƈq回其|实际上是一个数l下标)(j) } (tng) //初始条gQ“模拟空间分配站”已存在。操作结果:(x)释放l点P 的空?到“模拟空间分配站? static void free_SL(Position P) { (tng) (tng) (tng) (tng)Space[P].next = Space[0].next; (tng) (tng) (tng) (tng)Space[0].next = P;//回收Pl点的空_(d)实际上相当于入栈 QSpace[0]x(chng)? } (tng) Position MakeEmpty(SLink L)//初始条gQ线性表L已存在?操作l果Q将U性表L重置为空表? { (tng) (tng) (tng) Position P = Space[L].next; (tng) (tng) (tng) (tng) (tng) (tng) while(P) (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) free_SL(L); //从头l点开始依ơ释攑֛收结点的I间 (tng) (tng) (tng) (tng) (tng) (tng) (tng) L = P; (tng) (tng) (tng) (tng) (tng) (tng) (tng) P = Space[L].next; (tng) (tng) (tng) } (tng) (tng) //最后 (tng) Space[L].next = 0; } (tng) Position InitList(void) //构造一个空的线性表 { (tng) (tng) (tng) SLink L; (tng) (tng) (tng) (tng) (tng) (tng) L = malloc_SL(); //为链表的头结点分配空? (tng) (tng) (tng) if(!L) (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) printf("Out of space!"); (tng) (tng) (tng) (tng) (tng) (tng) return 0; (tng) (tng) (tng) } (tng) (tng) (tng) Space[L].next = 0; //使头l点的直接后lؓ(f)0,构造一个空的线性表 (tng) (tng) (tng) return L; } (tng) void DestroyList(SLink L)//初始条gQ线性表L已存在?操作l果Q销毁线性表L? { (tng) (tng) (tng) Position P = Space[L].next; (tng) (tng) (tng) (tng) (tng) (tng) while(P) (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) free_SL(L); //从头l点开始依ơ释攑֛收结点的I间 (tng) (tng) (tng) (tng) (tng) (tng) (tng) L = P; (tng) (tng) (tng) (tng) (tng) (tng) (tng) P = Space[L].next; (tng) (tng) (tng) } (tng) (tng) (tng) (tng) (tng)free_SL(L);//把头l点的空间也释放回收,d销毁线性表L } (tng) int IsEmpty(SLink L)//初始条gQ线性表L已存在?操作l果Q判断线性表是否为空表? { (tng) (tng) (tng) return Space[L].next == 0; } (tng) int SListLength(SLink L)//初始条gQ线性表L已存在?操作l果Q返回线性表Ll点的个数? { (tng) (tng) (tng) Position P = Space[L].next; (tng) (tng) (tng) int num = 0; (tng) (tng) (tng) (tng) (tng) (tng) (tng) while(P) //累积U性表Ll点的个? (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) num++; (tng) (tng) (tng) (tng) (tng) (tng) (tng) P = Space[P].next; (tng) (tng) (tng) } (tng) (tng) (tng) return num; (tng) //q回U性表Ll点的个? } (tng) Position NewSLNode(ElemType X)//构造一个数据域为X的新l点 { (tng) (tng) (tng) Position S; (tng) (tng) (tng) (tng) (tng) (tng) S = malloc_SL(); //为新l点分配I间 (tng) (tng) (tng) (tng) if(!S) (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) printf("Out of space!"); (tng) (tng) (tng) (tng) (tng) (tng) return 0; (tng) (tng) (tng) } (tng) (tng) (tng) Space[S].data = X; (tng) (tng) (tng) Space[S].next = 0; (tng) (tng) (tng) return S;//q回新结? } (tng) //初始条gQ线性表L和结点P已存在。操作结果:(x)判断P是否为链表L的结? int LContaiP(SLink L, Position P) { (tng) (tng) (tng) Position R = Space[L].next; (tng) (tng) (tng) (tng) (tng) (tng) while(R && R!=P) //遍历整个链表 (tng) (tng) (tng) (tng) (tng) (tng) (tng) R = Space[R].next; (tng) (tng) (tng) return R;//q回R,若P不是链表L的结?则R=0,否则R不ؓ(f)0 } (tng) int IsLast(Position P) //初始条gQ结点P已存在?操作l果Q判断P是否为尾l点 { (tng) (tng) (tng) return (tng) Space[P].next == 0; } //初始条gQ线性表L已存在。操作结果:(x)在线性表L中寻扑րgؓ(f)X的结点,若找到则q回该结点的前驱Q否则返回NULL? Position FindPrefious(ElemType X, SLink L) { (tng) (tng) (tng) Position P = L; (tng) (tng) (tng) (tng) (tng) (tng) while(Space[P].next && Space[Space[P].next].data != X)//遍历链表Lgؓ(f)X的结? (tng) (tng) (tng) (tng) (tng) (tng) (tng) P = Space[P].next; (tng) (tng) (tng) if(!Space[P].next) (tng) //如果找不到gؓ(f)X的结?q回NULL (tng) (tng) (tng) (tng) (tng) (tng) return 0; (tng) (tng) (tng) else (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) //若找到则q回该结点的前驱P(pn) (tng) (tng) (tng) (tng) (tng) (tng) return P; (tng) (tng) (tng) } (tng) void SListDelete(Position Pre)//初始条gQ线性表L中结点P已找到?操作l果Q删除该l点? { (tng) (tng) (tng) (tng)Position P; (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)P = Space[Pre].next; //删除l点P (tng) (tng) (tng) (tng)Space[Pre].next = Space[P].next; (tng) (tng) (tng) (tng)free_SL(P);//释放回收l点P的空? } //初始条gQ线性表L中结点P已找刎ͼ新结点S已构造。操作结果:(x)在该l点之前插入新结点X? void SListInsert(Position Pre, Position S) { (tng) (tng) (tng) (tng)Space[S].next = Space[Pre].next; (tng) (tng) (tng) (tng)Space[Pre].next = S;}
和动态链表一P以上操作为线性静(rn)态单链表的最基本的操作,其他操作可以是上q操作的l合?
例如要实现“判断结点P是否为链表L的尾l点”操作,函数如下Q?
int IsLLast(SLink L, Position P)
{
(tng) (tng) (tng) if(LContaiP(L, P)
(tng) (tng) (tng) (tng) (tng) (tng) return IsLast(P);
(tng) (tng) (tng) return 0;
}
如果你仔l的阅读q些代码Q你?x)发现动态链表和?rn)态链表的基本操作的实现算法很怼Q游标实现的接口和指针实现是一L(fng)。静(rn)态链表可以代替动态链表实玎ͼ实际上在E序的其余部分不需要变化,而且速度更快?
同样的让我们用一个实际的例子说明。已知集合A={1Q?Q?Q?Q?}QB={3Q?Q?Q?Q?Q?Q?Q?1}Q求集合A和B的交集的非,卻IA-BQƈQB-AQ?
法思\是先把集合A和B分别存入两个单向链表LA和LB中,以LB的结点P为研I对象,遍历LAQ看是否有与其同值的l点Q若有删除与l点P相同的结点,否则把结点P插入链表LA。最后得到的LA是集合A和B的交集的非?
具体的实现如下所C,因ؓ(f)函数部分已经包含在“线性表的静(rn)态单链表基本操作的算法实现“中Q所以不做重复,只把其他的部分列出来。程序经q测试,可以q行?
(tng)
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#define MAXSIZE 100//链表的最大长?
typedef int Position;
typedef int SLink;
typedef int ElemType;
typedef struct Node{
(tng) (tng) (tng) ElemType data;
(tng) (tng) (tng) Position next;
} SLinkList[MAXSIZE];
(tng)
SLink CreateList(ElemType a[], ElemType len);//用来构造一个链?
。。?/其他函数声明
int main(void)
{
(tng) (tng) SLink LA, LB;
(tng) (tng) (tng) Position P, Pre, S;
(tng) (tng) ElemType X, A[5]={1,2,3,4,5}, B[8]={3,4,5,6,7,8,9,1};
(tng)
(tng) (tng) InitSpace_SL(Space);//构造一个“模拟空间分配站?为全局变量
(tng)
(tng) (tng) //把集合A和B分别存入两个单向链表LA和LB?
(tng) (tng) LA = CreateList(A, 5);
(tng) (tng) LB = CreateList(B, 8);
(tng) (tng) //以LB的结点P为研I对象,遍历LAQ看是否有与其同值的l点Q若有删除与l点P相同的结点,否则把结点P插入链表LA?
(tng) (tng) P = Space[LB].next; (tng) (tng)
(tng) (tng) (tng) while(P)
(tng) (tng) { (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Space[P].data; (tng) (tng) (tng) //把结点P的DlX
(tng) (tng) (tng) (tng) (tng) (tng) Pre = FindPrefious(X, LA); //判断LA中是否有与P同值的l点 Q返回同值结点的前驱 (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) if(Pre) (tng) (tng) (tng) //若有Q删除结点PA (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) SListDelete(Pre);
(tng) (tng) (tng) (tng) (tng) (tng) else (tng)//否则
(tng) (tng) (tng) (tng) (tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)S = NewSLNode(X); //构造一个数据域为X的新l点Q即复制l点P到S
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)SListInsert(LA, S); (tng) //把结点S插入链表LA
(tng) (tng) (tng) (tng) (tng) (tng) (tng) } (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) P = Space[P].next; (tng) //l箋(hu)分析链表中的下一个结点?tng) (tng) (tng) (tng) (tng) (tng) (tng)?
(tng) (tng) (tng) }
(tng) (tng) (tng) //输出集合A和B的交集的?
(tng) (tng) Pre = LA;
(tng) (tng) (tng) (tng) printf("集合A和B的交集的?\n");
(tng) (tng) (tng) (tng) if(!Space[Pre].next)
(tng) (tng) (tng) (tng) (tng) printf("交集的非为空?");
(tng) (tng) else (tng) (tng) //输出链表LA的所有结点的值?tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)?
(tng) (tng) (tng) (tng) (tng) (tng) (tng) while(Space[Pre].next)
(tng) (tng) (tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Space[Space[Pre].next].data;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) printf("%d ", X);
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) Pre = Space[Pre].next;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) }
(tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) system("pause"); (tng) (tng) (tng) (tng)
(tng) (tng) return 0;
}
(tng)
SLink CreateList(ElemType a[], ElemType len)//用来构造一个链?
{
(tng) (tng) (tng) SLink L, S;
(tng) (tng) (tng) int i;
(tng) (tng) (tng) (tng)
(tng) (tng) (tng) L = InitList(); //构造一个空的线性表
(tng) (tng) (tng) for(i=0; i<len; i++)
(tng) (tng) (tng) { (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) S = NewSLNode(a[i]); //构造一个数据域为a[i]的新l点
(tng) (tng) (tng) (tng) (tng) (tng) SListInsert(L, S); //把新l点S插到头结点后面?
(tng) (tng) (tng) }
(tng) (tng) (tng) return L;
} (tng)
(tng)
如果你用?rn)态链表去做“求集合A和B的交集”的题目Q你?x)发玎ͼ它的d数部分和用动态链表做几乎一栗?
提问Q如果要同时求集合A和B的交集以?qing)交集的?Q又该怎么办呢Q?
提示Q算法思\是先把集合A和B分别存入两个单向链表LA和LB中,以LB的结点P为研I对象,遍历LAQ看是否有与其同值的l点Q若有删除与l点P相同的结点,否则把结点P插入链表LAQ还要根据情况判断是否执行删除结点P的指令,以便得到A和B的交集。最后得到的LA是集合A和B的交集的非;而LB是集合A和B的交集?
d数部分:(x)
int main(void)
{
(tng) (tng) SLink LA, LB;
(tng) (tng) (tng) Position PreA, PreB, S;
(tng) (tng) ElemType X, A[5]={1,2,3,4,5}, B[8]={3,4,5,6,7,8,9,11};
(tng)
(tng) (tng) InitSpace_SL(Space);//构造一个“模拟空间分配站?为全局变量
(tng)
(tng) (tng) //把集合A和B分别存入两个单向链表LA和LB?
(tng) (tng) LA = CreateList(A, 5);
(tng) (tng) LB = CreateList(B, 8);
(tng) (tng) //以LB的结点P为研I对象,遍历LAQ看是否有与其同值的l点Q若有删除与l点P相同的结点,否则把结点P插入链表LA?
(tng) //q要Ҏ(gu)情况判断是否执行删除l点P的指?
(tng) (tng) PreB = LB; //PreB表示l点P的前驱,在所有的操作中,我们都不直接操作被处理的l点Q而是操作其前驱?tng)?
(tng) (tng) (tng) while(Space[PreB].next)
(tng) (tng) { (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Space[Space[PreB].next].data; (tng) //把结点PB的DlX
(tng) (tng) (tng) (tng) (tng) (tng) PreA = FindPrefious(X, LA); //判断LA中是否有与PB同值的l点 Q返回同值结点的前驱
(tng) (tng) (tng) (tng) (tng) (tng) if(PreA) (tng) //若有Q删除结点PAQl分析链表中的下一个结?
(tng) (tng) (tng) (tng) (tng) (tng) (tng) { (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) SListDelete(PreA);
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) PreB = Space[PreB].next; (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) }
(tng) (tng) (tng) (tng) (tng) (tng) else //否则
(tng) (tng) (tng) (tng) (tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)S = NewSLNode(X); //构造一个数据域为X的新l点Q即复制l点PB到S
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)SListInsert(LA, S);//把结点S插入链表LA (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)SListDelete(PreB); //删除链表LB的结点PB
(tng) (tng) (tng) (tng) (tng) (tng) (tng) } (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) }
(tng) (tng) (tng) //输出集合A和B的交集的?
(tng) (tng) PreA = LA;
(tng) (tng) (tng) (tng) printf("集合A和B的交集的?\n");
(tng) (tng) (tng) (tng) if(!Space[PreA].next)
(tng) (tng) (tng) (tng) (tng) printf("交集的非为空?");
(tng) (tng) else (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) while(Space[PreA].next)
(tng) (tng) (tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Space[Space[PreA].next].data;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) printf("%d ", X);
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) PreA = Space[PreA].next; (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) }
(tng) (tng) //输出集合A和B的交集?
(tng) (tng) (tng) PreB = LB;
(tng) (tng) (tng) (tng) printf("\n集合A和B的交?\n");
(tng) (tng) (tng) (tng) if(!Space[PreB].next)
(tng) (tng) (tng) (tng) (tng) printf("交集为空?");
(tng) (tng) else (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) while(Space[PreB].next)
(tng) (tng) (tng) (tng) (tng) {
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) X = Space[Space[PreB].next].data;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) printf("%d ", X);
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) PreB = Space[PreB].next; (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) } (tng)
(tng) (tng) (tng) (tng) system("pause"); (tng) (tng) (tng) (tng)
(tng) (tng) return 0;
}
/*愿结伴共探编E之?作者:(x)孤峰*/
/*题目Q一哲学家围坐在一个圆桌,手上持有密码mQƈ?开始编?jin)号取初值mQ哲学家?开始报? 报到m的哲学家停止吃饭Q退出圆桌,求哲学家退出的序。要?n和初值m由完家输?手上的密码随Z?最后要打印出编号对应的密码Q输出哲学家d的相后顺序?/p>
分析:可用循环链表实现Q链表数据类型ؓ(f)l构体,记录~号和相应密码,另外设标志哲学家报数的变量mouth, 它的值和哲学家嘴上报的数相等,则如果mouth和m相等,该哲学家应该离开d前取他的密码交给m,同时他的编h另一单链表numbsave保存。注意编可从numbsave的最后节Ҏ(gu)入。当循环链表指向自n时停止比?q个哲学家即是最后离开的一?依次打印出numbsave中的数即为按~号哲学家离开的先后顺序?/p>
*/ (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
#include "stdio.h"
#include "conio.h"
#include "stdlib.h"
struct philosopher (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) /*哲学家就结构体*/
(tng){ int number; (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
/*~号*/
(tng) (tng) int password;
(tng) (tng) int mouth; (tng) (tng) (tng) (tng) /*嘴上报的?/
(tng) (tng) (tng) (tng) struct (tng)
philosopher *next;
(tng)};
struct philosopher *phead,*pend,*pp;
struct numbsave (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) /*存放d序*/
(tng){ int numsave;
(tng) (tng) struct
numbsave *next;
(tng)};
struct numbsave *top=NULL,*numbnew,*numbthis;
void main(void)
{ (tng)char *p,d;
(tng)int (tng) b=1,k,n,m,mouthm=1;
(tng)clrscr();
gotoxy(9,8);
(tng)printf("please input n
m:");
(tng)scanf("%d%d",&n,&m); (tng) (tng) (tng) (tng) (tng) (tng) (tng)
/*n为哲学家人数Qm为初始密?/
(tng)phead=(struct philosopher *)malloc(sizeof(struct
philosopher));
(tng)pend=phead;phead->mouth=1;
(tng)for(b=1;b<=n-1;b++) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) /*l哲学家分配随机密码*/
(tng){pend->number=b;
(tng)
k=random(20); (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) /*k?<k<20之间的数*/
(tng) while(k<=0)
(tng)
k=random(20);
(tng) pend->password=k;
(tng) pp=(struct philosopher
*)malloc(sizeof(struct philosopher));
(tng) pend->next=pp;
pend=pp;
(tng)}
(tng)pend->number=b; (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
/*最后一位哲学家*/
(tng)k=random(20); while(k<=0) k=random(20); pend->password=k;
pend->next=phead; /*形成循环链表*/
printf("\n\tphilosopher number correspondence
password as
followed:\n\t");
pp=phead;
for(b=1;b<=n;b++)
(tng){printf("%d:%d\t",pp->number,pp->password);
(tng)pp=pp->next;
(tng)}
while(pend->next!=pend)
(tng){if(phead->mouth==m) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng)/*如果嘴上报数和m相等Q意味着一个h要走?/
(tng) (tng){pp=phead;
(tng) (tng)
phead->next->mouth=1; (tng)mouthm=1; (tng) (tng)/*下一位哲学家从一开始报,mm用于顺序报出数的交l嘴?/
(tng) (tng)
phead=pend->next=phead->next; (tng) (tng) (tng)/*两个指针一定要盔R*/
(tng) (tng) numbnew=(struct
numbsave*)malloc(sizeof(struct numbsave));
(tng) (tng) m=pp->password; (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng)/*修改m的gؓ(f)d哲学家的password*/
(tng) (tng) numbnew->numsave=pp->number;
(tng) (tng)
if(top==NULL) (tng){top=numbnew; top->next=NULL;}
/*d的哲学家的编号存入numbsave的最后节?/
(tng) (tng) else (tng) {
numbthis=top;
(tng) (tng)while(numbthis->next!=NULL) (tng)
numbthis=numbthis->next;
(tng) (tng)
numbthis->next=numbnew; (tng)numbnew->next=NULL;
(tng) (tng) (tng)}
(tng) (tng)
free(pp);
(tng) (tng)}
(tng) (tng) else {pend=pend->next;
(tng) (tng) (tng) (tng) (tng) (tng) (tng)
phead=phead->next; (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)/*让phead指向下一?/
(tng) (tng) (tng) (tng) (tng) (tng) (tng)
mouthm++;
(tng) (tng) (tng) (tng) (tng) (tng) (tng) phead->mouth=mouthm; (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng) (tng)
(tng) (tng) (tng)/*嘴巴说我该报mouthm*/
(tng) (tng) (tng) (tng) (tng) (tng) (tng)
}
(tng)} (tng) (tng) (tng) (tng) (tng) (tng) (tng)/*打印L序*/
printf("\n\tphilosopher away from cookdesk in the
follow queue:\n\t");
while(top!=NULL)
(tng){ printf("%d (tng)
",top->numsave);
(tng)top=top->next;
(tng)}
printf("%d (tng)
",pend->number); (tng) (tng) (tng) (tng) (tng)/*q个千万别忘?sh)(jin),他是q气最好的一?/
printf("\n\tpress any key to go
back......");
while(!kbhit()) ;
}