emu in blogjava

            BlogJava :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
            171 隨筆 :: 103 文章 :: 1052 評論 :: 2 Trackbacks

          Problem Statement

          ???? There are three stacks of crates - two of them outside of the warehouse, and one inside the warehouse. We have a crane that can move one crate at a time, and we would like to move all of the crates to the stack inside the warehouse. A heavier crate can never be stacked on top of a lighter crate, and all three initial stacks obey that rule.

          Create a class CraneWork that contains a method moves that is given int[]s stack1, stack2, and warehouse containing the initial three stacks, and returns the minimum number of moves required to move all the crates into the warehouse stack. The elements of stack1, stack2, and warehouse represent the weights of the crates and are given from top to bottom (and thus in non-decreasing order of weight).

          Definition

          ????
          Class: CraneWork
          Method: moves
          Parameters: int[], int[], int[]
          Returns: int
          Method signature: int moves(int[] stack1, int[] stack2, int[] warehouse)
          (be sure your method is public)
          ????

          Constraints

          - stack1, stack2, and warehouse will each contain between 0 and 20 elements, inclusive.
          - The total number of elements in the three stacks will be between 1 and 20, inclusive.
          - Each element in the three stacks will be between 1 and 200, inclusive.
          - stack1, stack2, and warehouse will each be in non-decreasing order.

          Examples

          0)
          ????
          {3,50}
          {}
          {1,2,50,50,50}
          Returns: 12
          Move 3 to stack2, 1 to stack1, 2 to stack2, 1 to stack2, 50 to warehouse, 1 to warehouse, 2 to stack1, 1 to stack1, 3 to warehouse, 1 to stack2, 2 to warehouse, 1 to warehouse.
          1)
          ????
          {50}
          {50}
          {10,20,30}
          Returns: 17
          Start by moving 50 from stack2 to stack1. It then takes 7 moves to transfer the 10,20,30 to stack 2, 2 moves to transfer the 2 50's to the warehouse, and 7 more to transfer the 10,20,30 to the warehouse.
          2)
          ????
          {}
          {}
          {2,5,6,7}
          Returns: 0
          All the crates are already in the warehouse.
          3)
          ????
          {1,2,3}
          {}
          {}
          Returns: 7
          Move 1 from stack1 to warehouse, 2 from stack1 to stack2, 1 from warehouse to stack2, 3 from stack1 to warehouse, 1 from stack2 to stack1, 2 from stack2 to warehouse, 1 from stack1 to warehouse.

          This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

          posted on 2006-09-05 10:21 emu 閱讀(6637) 評論(7)  編輯  收藏 所屬分類: google編程大賽模擬題及入圍賽真題

          評論

          # re: 1000分模擬題CraneWork 2007-06-09 11:02 匿名
          #include <iostream>
          using namespace std;


          class CStack{
          public:
          CStack(){
          memset(data,0,100*sizeof(int));
          index=0;
          }
          virtual~CStack(){}
          int Pop() { sum++; return data[index--];}
          void Push(int D) { data[++index]=D; }
          int Find(int D,int I)
          {
          for(int i=I;i<=index;i++)
          if(data[i]<D)
          return i;
          return index+1;
          }
          int Show(int I)
          {
          if(index==0) return 0;
          if(I>index||I<1)
          return 0;
          return data[I];
          }
          bool Istop(int T)
          {
          if(T==index) return true;
          else return false;
          }
          void Show()
          {
          if(index==0)
          {
          cout<<"空"<<endl;
          return;
          }

          for(int i=index;i>0;i--)
          cout<<data[i]<<" ";
          cout<<endl;
          }
          public:
          static int sum;
          private:
          int data[100];
          int index;
          };
          int CStack::sum=0;

          CStack stack[3];


          void show()
          {
          cout<<"////////////////"<<endl;
          for(int i=0;i<3;i++)
          stack[i].Show();
          cout<<"////////////////"<<endl;
          }
          void CraneWork(int a,int k1,int b,int k2,int c,int k3)
          {
          int x=stack[a].Show(k1);
          int y=stack[b].Show(k2);
          int z=stack[c].Show(k3);
          if(x==0&&y==0) return;

          if(z>=x&&z>=y)
          {
          if(x>=y)
          {
          int k=stack[c].Find(x,k3);
          CraneWork(a,k1+1,c,k,b,k2);
          stack[c].Push(stack[a].Pop());
          show();
          CraneWork(b,k2,a,k1,c,k+1);
          }
          else
          {
          int k=stack[c].Find(y,k3);
          CraneWork(b,k2+1,c,k,a,k1);
          stack[c].Push(stack[b].Pop());
          CraneWork(a,k1,b,k2,c,k+1);
          }
          }
          if(x>z&&x>=y)
          {
          if(x==y)
          {
          if(stack[a].Istop(k1)&&stack[b].Istop(k2))
          {
          stack[a].Push(stack[b].Pop());
          CraneWork(a,k1+2,c,k3,b,k2);
          stack[c].Push(stack[a].Pop());
          stack[c].Push(stack[a].Pop());
          CraneWork(a,k1,b,k2,c,k3+2);
          return;
          }
          }
          CraneWork(a,k1+1,c,k3,b,k2);
          stack[c].Push(stack[a].Pop());
          show();
          CraneWork(a,k1,b,k2,c,k3+1);

          }
          if(y>z&&y>x)
          {
          CraneWork(b,k2+1,c,k3,a,k1);
          stack[c].Push(stack[b].Pop());
          show();
          CraneWork(a,k1,b,k2,c,k3+1);
          }
          }



          int _tmain(int argc, _TCHAR* argv[])
          {
          /*stack[0].Push(50);
          stack[0].Push(3);
          stack[2].Push(50);
          stack[2].Push(50);
          stack[2].Push(50);
          stack[2].Push(2);
          stack[2].Push(1);*/
          /*stack[0].Push(3);
          stack[0].Push(2);
          stack[0].Push(1);*/
          stack[0].Push(50);
          stack[1].Push(50);
          stack[2].Push(30);
          stack[2].Push(20);
          stack[2].Push(10);


          show();
          CraneWork(0,1,1,1,2,1);
          show();
          cout<<"次數為:"<<CStack::sum<<endl;
          return 0;
          }
            回復  更多評論
            

          # re: 1000分模擬題CraneWork [未登錄] 2007-08-06 18:52 zero
          very easy!  回復  更多評論
            

          # re: 1000分模擬題CraneWork [未登錄] 2007-11-11 22:23 y
          g sdfg  回復  更多評論
            

          # re: 1000分模擬題CraneWork 2008-09-19 09:26
          比賽題目都是英文么  回復  更多評論
            

          # re: 1000分模擬題CraneWork 2008-09-22 11:21 hejian
          這是一道漢諾塔的變種題,不知使用進位迭代的方式還有沒有效,有時間可以試一下。  回復  更多評論
            

          # re: 1000分模擬題CraneWork 2008-11-27 17:59 誠人
          一直對google技術佩服!我也要研究一番。  回復  更多評論
            

          # re: 1000分模擬題CraneWork [未登錄] 2010-10-03 23:54 無名
          鑒定完畢,此程序有問題。  回復  更多評論
            

          主站蜘蛛池模板: 永年县| 余干县| 辛集市| 赣榆县| 南投县| 天全县| 榆林市| 三穗县| 杭锦后旗| 巴中市| 双桥区| 东乡族自治县| 商丘市| 双柏县| 惠来县| 娄底市| 博爱县| 黎川县| 齐齐哈尔市| 龙里县| 九江市| 饶阳县| 平利县| 读书| 古浪县| 湘乡市| 依安县| 红河县| 黑龙江省| 噶尔县| 邯郸市| 海林市| 湘潭市| 金川县| 宝清县| 富锦市| 嵊泗县| 长葛市| 芦山县| 四会市| 灵武市|