posts - 14,  comments - 8,  trackbacks - 0
          ?

          HashMap是Java新Collection Framework中用來代替HashTable的一個實現(xiàn),HashMap和HashTable的區(qū)別是: HashMap是未經(jīng)同步的,而且允許null值。HashTable繼承Dictionary,而且使用了Enumeration,所以被建議不要使用。
          HashMap的聲明如下:
          public class HashMap extends AbstractMap implements Map, Cloneable,Serializable
          有關(guān)AbstractMap:http://blog.csdn.net/treeroot/archive/2004/09/20/110343.aspx
          有關(guān)Map:http://blog.csdn.net/treeroot/archive/2004/09/20/110331.aspx
          有關(guān)Cloneable:http://blog.csdn.net/treeroot/archive/2004/09/07/96936.aspx
          這個類比較復雜,這里只是重點分析了幾個方法,特別是后面涉及到很多內(nèi)部類都沒有解釋
          不過都比較簡單。

          static final int DEFAULT_INITIAL_CAPACITY = 16; 默認初始化大小

          static final int MAXIMUM_CAPACITY = 1 << 30; 最大初始化大小

          static final float DEFAULT_LOAD_FACTOR = 0.75f; 默認加載因子

          transient Entry[] table; 一個Entry類型的數(shù)組,數(shù)組的長度為2的指數(shù)。

          transient int size; 映射的個數(shù)

          int threshold; 下一次擴容時的值

          final float loadFactor; 加載因子

          transient volatile int modCount; 修改次數(shù)

          public HashMap(int initialCapacity, float loadFactor) {
             if (initialCapacity < 0)
               throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);
             if (initialCapacity > MAXIMUM_CAPACITY)
               initialCapacity = MAXIMUM_CAPACITY;
             if (loadFactor <= 0 || Float.isNaN(loadFactor))
               throw new IllegalArgumentException("Illegal load factor: " +loadFactor);
             int capacity = 1;
             while (capacity < initialCapacity)
               capacity <<= 1;
             this.loadFactor = loadFactor;
             threshold = (int)(capacity * loadFactor);
             table = new Entry[capacity];
             init();
          }

          public HashMap(int initialCapacity) {
             this(initialCapacity, DEFAULT_LOAD_FACTOR);
          }

          public HashMap() {
             this.loadFactor = DEFAULT_LOAD_FACTOR;
             threshold = (int)(DEFAULT_INITIAL_CAPACITY);
                注意:這里應該是一個失誤! 應該是:threshold =(int)(DEFAULT_INITIAL_CAPACITY * loadFactor);
             table = new Entry[DEFAULT_INITIAL_CAPACITY];
             init();
          }

          public HashMap(Map m) {
             this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY),                                   DEFAULT_LOAD_FACTOR);
             putAllForCreate(m);
          }

          void init() {}

          static final Object NULL_KEY = new Object();

          static Object maskNull(Object key){
             return (key == null ? NULL_KEY : key);
          }

          static Object unmaskNull(Object key) {
             return (key == NULL_KEY ? null : key);
          }

          static int hash(Object x) {
             int h = x.hashCode();
             h += ~(h << 9);
             h ^= (h >>> 14);
             h += (h << 4);
             h ^= (h >>> 10);
          return h;
          }
          在HashTable中沒有這個方法,也就是說HashTable中是直接用對象的hashCode值,但是HashMap做了改進 用這個算法來獲得哈希值。

          static boolean eq(Object x, Object y) {
             return x == y || x.equals(y);
          }

          static int indexFor(int h, int length) {
             return h & (length-1);
          }
          根據(jù)哈希值和數(shù)組的長度來返回該hash值在數(shù)組中的位置,只是簡單的與關(guān)系。

          public int size() {
             return size;
          }

          public boolean isEmpty() {
            return size == 0;
          }

          public Object get(Object key) {
             Object k = maskNull(key);
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             Entry e = table[i];
             while (true) {
               if (e == null) return e;
               if (e.hash == hash && eq(k, e.key)) return e.value;
               e = e.next;
             }
          }
          這個方法是獲取數(shù)據(jù)的方法,首先獲得哈希值,這里把null值掩飾了,并且hash值經(jīng)過函數(shù)hash()修正。 然后計算該哈希值在數(shù)組中的索引值。如果該索引處的引用為null,表示HashMap中不存在這個映射。 否則的話遍歷整個鏈表,這里找到了就返回,如果沒有找到就遍歷到鏈表末尾,返回null。這里的比較是這樣的:e.hash==hash && eq(k,e.key) 也就是說如果hash不同就肯定認為不相等,eq就被短路了,只有在 hash相同的情況下才調(diào)用equals方法。現(xiàn)在我們該明白Object中說的如果兩個對象equals返回true,他們的 hashCode應該相同的道理了吧。假如兩個對象調(diào)用equals返回true,但是hashCode不一樣,那么在HashMap 里就認為他們不相等。

          public boolean containsKey(Object key) {
             Object k = maskNull(key);
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             Entry e = table[i];
             while (e != null) {
               if (e.hash == hash && eq(k, e.key)) return true;
               e = e.next;
             }
            return false;
          }
          這個方法比上面的簡單,先找到哈希位置,再遍歷整個鏈表,如果找到就返回true。

          Entry getEntry(Object key) {
             Object k = maskNull(key);
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             Entry e = table[i];
             while (e != null && !(e.hash == hash && eq(k, e.key)))
               e = e.next;
             return e;
          }
          這個方法根據(jù)key值返回Entry節(jié)點,也是先獲得索引位置,再遍歷鏈表,如果沒有找到返回的是null。

          public Object put(Object key, Object value) {
             Object k = maskNull(key);
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             for (Entry e = table[i]; e != null; e = e.next) {
               if (e.hash == hash && eq(k, e.key)) {
                 Object oldValue = e.value;
                 e.value = value;
                 e.recordAccess(this);
                 return oldValue;
               }
             }
             modCount++;
             addEntry(hash, k, value, i);
             return null;
          }
          首先獲得hash索引位置,如果該位置的引用為null,那么直接插入一個映射,返回null。如果此處的引用不是null,必須遍歷鏈表,如果找到一個相同的key,那么就更新該value,同時返回原來的value值。如果遍歷完了沒有找到,說明該key值不存在,還是插入一個映射。如果hash值足夠離散的話,也就是說該索引沒有被使用的話,那么不不用遍歷鏈表了。相反,如果hash值不離散,極端的說如果是常數(shù)的話,所有的映射都會在這一個鏈表上,效率會極其低下。這里舉一個最簡單的例子,寫兩
          個不同的類作為key插入到HashMap中,效率會遠遠不同。
          class Good{
            int i;
            public Good(int i){
             this.i=i;
            }
            public boolean equals(Object o){
             return (o instanceof Good) && (this.i==((Good)o).i)
            }
            public int hashCode(){
             return i;
            }
          }
          class Bad{
            int i;
            public Good(int i){
              this.i=i;
            }
            public boolean equals(Object o){
              return (o instanceof Good) && (this.i==((Good)o).i)
            }
            public int hashCode(){
             return 0;
            }
          }
          執(zhí)行代碼:
          Map m1=new HashMap();
          Map m2=new HashMap();
          for(int i=0;i<100;i++){
            m1.put(new Good(i),new Integer(i)); //這里效率非常高
          }
          for(int i=0;i<100;i++){
            m2.put(new Bad(i),new Integer(i)); //這里幾乎要崩潰
          }
          上面的是兩個非常極端的例子,執(zhí)行一下就知道差別有多大。

          private void putForCreate(Object key, Object value) {
             Object k = maskNull(key);
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             for (Entry e = table[i]; e != null; e = e.next) {
               if (e.hash == hash && eq(k, e.key)) {
                  e.value = value;
                  return;
               }
             }
             createEntry(hash, k, value, i);
          }

          void putAllForCreate(Map m) {
             for (Iterator i = m.entrySet().iterator(); i.hasNext(); ) {
               Map.Entry e = (Map.Entry) i.next();
               putForCreate(e.getKey(), e.getValue());
             }
          }
          上面的兩個方法是被構(gòu)造函數(shù)和clone方法調(diào)用的。

          void resize(int newCapacity) {
             Entry[] oldTable = table;
             int oldCapacity = oldTable.length;
             if (size < threshold || oldCapacity > newCapacity)
               return;
             Entry[] newTable = new Entry[newCapacity];
             transfer(newTable);
             table = newTable;
             threshold = (int)(newCapacity * loadFactor);
          }
          這個方法在需要的時候重新分配空間,相當于ArrayList的ensureCapacity方法,不過這個更加復雜。

          void transfer(Entry[] newTable) {
             Entry[] src = table;
             int newCapacity = newTable.length;
             for (int j = 0; j < src.length; j++) {
               Entry e = src[j];
               if (e != null) {
                 src[j] = null;
                 do {
                    Entry next = e.next;
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                 } while (e != null);
               }
             }
          }
          遍歷原來的數(shù)組,如果該Entry不是null的話,說明有映射,然后遍歷這個鏈表,把所有的映射插入到新的數(shù)組中,注意這里要從新計算索引位置。

          public void putAll(Map t) {
             int n = t.size();
             if (n == 0)
               return;
             if (n >= threshold) {
               n = (int)(n / loadFactor + 1);
               if (n > MAXIMUM_CAPACITY)
                 n = MAXIMUM_CAPACITY;
               int capacity = table.length;
               while (capacity < n) capacity <<= 1;
                 resize(capacity);
             }
             for (Iterator i = t.entrySet().iterator(); i.hasNext(); ) {
               Map.Entry e = (Map.Entry) i.next();
               put(e.getKey(), e.getValue());
             }
          }
          這個方法先確定是否需要擴大空間,然后循環(huán)調(diào)用put方法。

          public Object remove(Object key) {
             Entry e = removeEntryForKey(key);
             return (e == null ? e : e.value);
          }

          Entry removeEntryForKey(Object key) {
             Object k = maskNull(key);
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             Entry prev = table[i];
             Entry e = prev;
             while (e != null) {  如果e==null表示不存在
               Entry next = e.next;
               if (e.hash == hash && eq(k, e.key)) {
                 modCount++;
                 size--;
                 if (prev == e)
                   table[i] = next; 鏈表的第一個元素就是要刪除的,這里最好加一句 e.next=null.
                 else
                   prev.next = next; 存在擔不是鏈表的第一個元素, 這里最好加一句 e.next=null.
                 e.recordRemoval(this);
                 return e;
               }
               prev = e;
               e = next;
             }
            return e;   這里其實就是return null;
          }
          這個方法其實也不復雜,也是遍歷鏈表,這里建議加一句e.next=null,可以改為
          if(prev==e)
            table[i]=next;
          else
            prev.next=next;
          e.next=null; 這一句是多加的,可以提高效率。
          這里簡單說明我的看法:
          因為e是被刪除的節(jié)點,刪除它其實就是指向它的指針指向它的后面一個節(jié)點。所以e可以作為GC回收的對象。
          可以e還有一個next指針指向我們的數(shù)據(jù),如果e沒有被回收。而且此時e.next指向的節(jié)點也變?yōu)闆]用的了,但是
          卻有一個它的引用(e.next),所以雖然e的下一個節(jié)點沒用了,但是卻不能作為GC回收的對象,除非e先被回收。
          雖然不一定會引起很大的問題,但是至少會影響GC的回收效率。就像數(shù)據(jù)庫中的外鍵引用一樣,刪除起來很麻煩呀。

          Entry removeMapping(Object o) {
             if (!(o instanceof Map.Entry))
               return null;
             Map.Entry entry = (Map.Entry)o;
             Object k = maskNull(entry.getKey());
             int hash = hash(k);
             int i = indexFor(hash, table.length);
             Entry prev = table[i];
             Entry e = prev;
             while (e != null) {
               Entry next = e.next;
               if (e.hash == hash && e.equals(entry)) {
                 modCount++;
                 size--;
                 if (prev == e)
                   table[i] = next;
                 else
                   prev.next = next;
                 e.recordRemoval(this);
                 return e;
                }
                prev = e;
                e = next;
             }
             return e;
          }
          這個方法和上面的一樣。

          public void clear() {
             modCount++;
             Entry tab[] = table;
             for (int i = 0; i < tab.length; i++)
               tab[i] = null;
             size = 0;
          }
          同樣可以改進

          public boolean containsValue(Object value) {
             if (value == null)
               return containsNullValue();
             Entry tab[] = table;
             for (int i = 0; i < tab.length ; i++)
               for (Entry e = tab[i] ; e != null ; e = e.next)
                 if (value.equals(e.value)) return true;
             return false;
          }

          private boolean containsNullValue() {
             Entry tab[] = table;
             for (int i = 0; i < tab.length ; i++)
               for (Entry e = tab[i] ; e != null ; e = e.next)
                 if (e.value == null) return true;
             return false;
          }

          public Object clone() {
             HashMap result = null;
             try {
               result = (HashMap)super.clone();
             }
             catch (CloneNotSupportedException e) { // assert false; }
             result.table = new Entry[table.length];
             result.entrySet = null;
             result.modCount = 0;
             result.size = 0;
             result.init();
             result.putAllForCreate(this);
             return result;
          }

          static class Entry implements Map.Entry {
             final Object key;
             Object value;
             final int hash;
             Entry next;
             Entry(int h, Object k, Object v, Entry n) {
               value = v;
               next = n;
               key = k;
               hash = h;
             }
             public Object getKey() {
               return unmaskNull(key);
             }
             public Object getValue() {
               return value;
             }
             public Object setValue(Object newValue) {
                Object oldValue = value;
                value = newValue;
                return oldValue;
             }
             public boolean equals(Object o) {
               if (!(o instanceof Map.Entry)) return false;
               Map.Entry e = (Map.Entry)o;
               Object k1 = getKey();
               Object k2 = e.getKey();
               if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                 Object v1 = getValue();
                 Object v2 = e.getValue();
                 if (v1 == v2 || (v1 != null && v1.equals(v2))) return true;
               }
               return false;
              }
              public int hashCode() {
                return (key==NULL_KEY ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode());
              }
              public String toString() {
                return getKey() + "=" + getValue();
              }
              void recordAccess(HashMap m) { }
              void recordRemoval(HashMap m) { }
          }
          一個靜態(tài)內(nèi)部類

          void addEntry(int hash, Object key, Object value, int bucketIndex) {
              table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);
              if (size++ >= threshold)
                resize(2 * table.length);
          }
          注意這個方法,插入連表的頭。
          可以寫成這樣更好理解:
          Entry oldHead=table[bucketIndex];
          Entry newHead = new Entry(hash,key,value,oldHead);
          table[bucketIndex]=newHead;

          void createEntry(int hash, Object key, Object value, int bucketIndex) {
             table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);
             size++;
          }

          private abstract class HashIterator implements Iterator {
             Entry next;
             int expectedModCount;
             int index;
             Entry current;
             HashIterator() {
               expectedModCount = modCount;
               Entry[] t = table;
               int i = t.length;
               Entry n = null;
               if (size != 0) {
                 while (i > 0 && (n = t[--i]) == null) ;
               }
               next = n;
               index = i;
             }
             public boolean hasNext() {
               return next != null;
             }
             Entry nextEntry() {
               if (modCount != expectedModCount)
                 throw new ConcurrentModificationException();
               Entry e = next;
              if (e == null)
                 throw new NoSuchElementException();
               Entry n = e.next;
               Entry[] t = table;
               int i = index;
               while (n == null && i > 0)
                  n = t[--i]; index = i;
               next = n;
               return current = e;
             }
             public void remove() {
               if (current == null)
                 throw new IllegalStateException();
               if (modCount != expectedModCount)
                 throw new ConcurrentModificationException();
               Object k = current.key;
               current = null;
               HashMap.this.removeEntryForKey(k);
               expectedModCount = modCount;
             }
          }

          private class ValueIterator extends HashIterator {
             public Object next() {
               return nextEntry().value;
             }
          }

          private class KeyIterator extends HashIterator {
             public Object next() {
               return nextEntry().getKey();
             }
          }

          private class EntryIterator extends HashIterator {
             public Object next() {
               return nextEntry();
             }
          }

          Iterator newKeyIterator() {
             return new KeyIterator();
          }

          Iterator newValueIterator() {
             return new ValueIterator();
          }

          Iterator newEntryIterator() {  
             return new EntryIterator();
          }

          private transient Set entrySet = null;

          public Set keySet() {
             Set ks = keySet;
             return (ks != null ? ks : (keySet = new KeySet()));
          }

          private class KeySet extends AbstractSet {
             public Iterator iterator() {
               return newKeyIterator();
             }
             public int size() {
               return size;
             }
             public boolean contains(Object o) {
               return containsKey(o);
             }
             public boolean remove(Object o) {
               return HashMap.this.removeEntryForKey(o) != null;
             }
             public void clear() {
               HashMap.this.clear();
             }
          }

          public Collection values() {
             Collection vs = values; return (vs != null ? vs : (values = new Values()));
          }

          private class Values extends AbstractCollection {
             public Iterator iterator() {
               return newValueIterator();
             }
             public int size() {
               return size;
             }
             public boolean contains(Object o) {
               return containsValue(o);
             }
             public void clear() {
               HashMap.this.clear();
             }
          }

          public Set entrySet() {
             Set es = entrySet;
             return (es != null ? es : (entrySet = new EntrySet()));
          }

          private class EntrySet extends AbstractSet {
             public Iterator iterator() {
               return newEntryIterator();
             }
             public boolean contains(Object o) {
               if (!(o instanceof Map.Entry))
                 return false;
               Map.Entry e = (Map.Entry)o;
               Entry candidate = getEntry(e.getKey());
               return candidate != null && candidate.equals(e);
             }
             public boolean remove(Object o) {
               return removeMapping(o) != null;
             }
             public int size() {
               return size;
             }
             public void clear() {
               HashMap.this.clear();
             }
          }

          private void writeObject(java.io.ObjectOutputStream s) throws IOException {
             s.defaultWriteObject();
             s.writeInt(table.length);
             s.writeInt(size);
             for (Iterator i = entrySet().iterator(); i.hasNext(); ) {
               Map.Entry e = (Map.Entry) i.next();
               s.writeObject(e.getKey());
               s.writeObject(e.getValue());
             }
          }

          private static final long serialVersionUID = 362498820763181265L;

          private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException {
             s.defaultReadObject();
             int numBuckets = s.readInt();
             table = new Entry[numBuckets];
             init();
             size = s.readInt(); for (int i=0;
             for (int i=0; i<size; i++) {
               Object key = s.readObject();
               Object value = s.readObject(); 
               putForCreate(key, value);
             }
          }

          int capacity() {
            return table.length;
          }
          float loadFactor() {
             return loadFactor;
          }


          posted on 2006-07-09 11:38 虎嘯龍吟 閱讀(505) 評論(3)  編輯  收藏

          FeedBack:
          # wow gold
          2008-06-25 10:05 | wow gold
          WoW Gold,Buy Wow Gold,Cheap WoW Gold,wow power leveling,world of warcraft gold  回復  更多評論
            
          # wow gold
          2008-06-25 10:05 | wow gold
          <a href="http://www.wowgold1000.com/">WoW Gold</a>,<a href="http://www.wowgold1000.com/">Buy Wow Gold</a>,<a href="http://www.wowgold1000.com/">Cheap WoW Gold</a>,<a href="http://www.wowgold800.com/">wow power leveling</a>,<a href="http://www.wowgold1000.com/">world of warcraft gold</a>  回復  更多評論
            
          # re: 源碼分析:HashMap
          2008-08-27 11:37 | Web 2.0 技術(shù)資源
          #########################################
          void transfer(Entry[] newTable) {
             Entry[] src = table;
             int newCapacity = newTable.length;
             for (int j = 0; j < src.length; j++) {
               Entry e = src[j];
               if (e != null) {
                 src[j] = null;
                 do {
                    Entry next = e.next;
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                 } while (e != null);
               }
             }
          }
          遍歷原來的數(shù)組,如果該Entry不是null的話,說明有映射,然后遍歷這個鏈表,把所有的映射插入到新的數(shù)組中,注意這里要從新計算索引位置。
          #########################################

          Entry next = e.next;
          int i = indexFor(e.hash, newCapacity);
          e.next = newTable[i]; ?????????
          newTable[i] = e; ?????????

          為什么 e.next 要指向自己呢?


            回復  更多評論
            

          只有注冊用戶登錄后才能發(fā)表評論。


          網(wǎng)站導航:
           
          <2008年8月>
          272829303112
          3456789
          10111213141516
          17181920212223
          24252627282930
          31123456

          常用鏈接

          留言簿(1)

          隨筆分類

          隨筆檔案

          文章檔案

          相冊

          友情鏈接

          搜索

          •  

          最新評論

          閱讀排行榜

          評論排行榜

          主站蜘蛛池模板: 大洼县| 鹤壁市| 铜山县| 巢湖市| 建湖县| 宁陵县| 新泰市| 孝昌县| 蒙城县| 绩溪县| 太谷县| 锦屏县| 定陶县| 延津县| 廊坊市| 东城区| 襄城县| 射洪县| 河间市| 无为县| 文山县| 保德县| 松江区| 怀集县| 沈阳市| 无为县| 荣成市| 烟台市| 安化县| 奉新县| 雷山县| 剑阁县| 龙川县| 临颍县| 襄城县| 长兴县| 休宁县| 光泽县| 广灵县| 丰都县| 鱼台县|