adding the Amazon Rekognition component

          In this exercise, you will extend the application by adding the Amazon Rekognition component. As soon as you upload a photo to your Amazon S3 bucket, Amazon Rekognition processes the photo and identifies objects, people, text, scenes, and activities in the photo and labels it accordingly. 
          Note: Make sure to sign in to your AWS account with the AWS IAM user edXProjectUser credentials.

          To get started, follow the instructions below.

          1. Download the exercise code .zip file to your AWS Cloud9 environment.

          2. Unzip the exercise code .zip file.

          • Unzip the exercise code .zip file by typing the command below on your AWS Cloud9 terminal.
          • unzip ex-rekognition.zip

            The contents of the .zip file should be extracted to a folder with a similar name. You can view the folder on the left tree view.

          • You may want to close any tabs that remain open from previous exercises.

          3. Explore the exercise code.

          • Open the exercise-rekognition/FlaskApp/application.py file.
          • In the Homepage route function, notice that a Boto 3 client for Amazon Rekognition is created. The image uploaded in the Amazon S3 bucket is passed to the detect_labels API, which returns a list of labels processed by Amazon Rekognition. These labels are then populated on the UI.

          4. Run and test the code.

          • To run the application.py code, on the top menu bar, click Run -> Run Configurations -> Python3RunConfiguration.
          • Important: Notice that the run configuration runs the application.py for the previous exercise.
          • Point the run configuration to the correct exercise folder by editing the folder path in the Command text box in the bottom pane.
            In that text box, type exercise-rekognition/FlaskApp/application.py
          • Click Run on the left side. You should see a message like this:
          • Running on http://0.0.0.0:5000/

          • Go to your browser and type the IP address of the Amazon EC2 instance that hosts your AWS Cloud9 environment. At the end of the IP address, type :5000

            The application should now have the functionality related to Amazon Rekognition.

          • To test the Amazon Rekognition component, click Home on the application.
          • Upload an image. Amazon Rekognition should label the image with the image properties.

          Optional Challenge

          The Boto 3 detect_labels response includes a Confidence value. Can you update the application UI to include the Confidence? Or define a threshold and only display labels over the confidence threshold?



          眼鏡蛇

          posted on 2018-04-19 11:16 眼鏡蛇 閱讀(172) 評論(0)  編輯  收藏 所屬分類: AWS

          <2025年6月>
          25262728293031
          1234567
          891011121314
          15161718192021
          22232425262728
          293012345

          導航

          統計

          常用鏈接

          留言簿(6)

          隨筆分類

          隨筆檔案

          文章分類

          文章檔案

          搜索

          最新評論

          閱讀排行榜

          評論排行榜

          主站蜘蛛池模板: 晴隆县| 伊吾县| 普兰店市| 云浮市| 榆社县| 中方县| 辰溪县| 历史| 舒兰市| 西华县| 兴宁市| 临洮县| 乳源| 盐边县| 五华县| 青河县| 鞍山市| 彭阳县| 青海省| 石家庄市| 墨脱县| 雷州市| 射阳县| 西宁市| 垫江县| 遵化市| 石棉县| 阿巴嘎旗| 桃园县| 阜宁县| 镇康县| 苍南县| 乐至县| 关岭| 肥东县| 金溪县| 洮南市| 西畴县| 西丰县| 瑞昌市| 龙川县|