在閱讀本文之前,如果你連堆棧是什么多不知道的話,請(qǐng)先閱讀文章后面的基礎(chǔ)知識(shí)。
接觸過編程的人都知道,高級(jí)語言都能通過變量名來訪問內(nèi)存中的數(shù)據(jù)。那么這些變量在內(nèi)存中是如何存放的呢?程序又是如何使用這些變量的呢?下面就會(huì)對(duì)此進(jìn)行深入的討論。下文中的C語言代碼如沒有特別聲明,默認(rèn)都使用VC編譯的release版。
首先,來了解一下 C 語言的變量是如何在內(nèi)存分部的。C 語言有全局變量(Global)、本地變量(Local),靜態(tài)變量(Static)、寄存器變量(Regeister)。每種變量都有不同的分配方式。先來看下面這段代碼:
#include <stdio.h>
int g1=0, g2=0, g3=0;
int main()
{
static int s1=0, s2=0, s3=0;
int v1=0, v2=0, v3=0;
//打印出各個(gè)變量的內(nèi)存地址
printf("0x%08x\n",&v1); //打印各本地變量的內(nèi)存地址
printf("0x%08x\n",&v2);
printf("0x%08x\n\n",&v3);
printf("0x%08x\n",&g1); //打印各全局變量的內(nèi)存地址
printf("0x%08x\n",&g2);
printf("0x%08x\n\n",&g3);
printf("0x%08x\n",&s1); //打印各靜態(tài)變量的內(nèi)存地址
printf("0x%08x\n",&s2);
printf("0x%08x\n\n",&s3);
return 0;
}
編譯后的執(zhí)行結(jié)果是:
0x0012ff78
0x0012ff7c
0x0012ff80
0x004068d0
0x004068d4
0x004068d8
0x004068dc
0x004068e0
0x004068e4
輸出的結(jié)果就是變量的內(nèi)存地址。其中v1,v2,v3是本地變量,g1,g2,g3是全局變量,s1,s2,s3是靜態(tài)變量。你可以看到這些變量在內(nèi)存是連續(xù)分布的,但是本地變量和全局變量分配的內(nèi)存地址差了十萬八千里,而全局變量和靜態(tài)變量分配的內(nèi)存是連續(xù)的。這是因?yàn)楸镜刈兞亢腿?靜態(tài)變量是分配在不同類型的內(nèi)存區(qū)域中的結(jié)果。對(duì)于一個(gè)進(jìn)程的內(nèi)存空間而言,可以在邏輯上分成3個(gè)部份:代碼區(qū),靜態(tài)數(shù)據(jù)區(qū)和動(dòng)態(tài)數(shù)據(jù)區(qū)。動(dòng)態(tài)數(shù)據(jù)區(qū)一般就是“堆棧”。“棧(stack)”和“堆(heap)”是兩種不同的動(dòng)態(tài)數(shù)據(jù)區(qū),棧是一種線性結(jié)構(gòu),堆是一種鏈?zhǔn)浇Y(jié)構(gòu)。進(jìn)程的每個(gè)線程都有私有的“棧”,所以每個(gè)線程雖然代碼一樣,但本地變量的數(shù)據(jù)都是互不干擾。一個(gè)堆棧可以通過“基地址”和“棧頂”地址來描述。全局變量和靜態(tài)變量分配在靜態(tài)數(shù)據(jù)區(qū),本地變量分配在動(dòng)態(tài)數(shù)據(jù)區(qū),即堆棧中。程序通過堆棧的基地址和偏移量來訪問本地變量。
├———————┤低端內(nèi)存區(qū)域
│ …… │
├———————┤
│ 動(dòng)態(tài)數(shù)據(jù)區(qū) │
├———————┤
│ …… │
├———————┤
│ 代碼區(qū) │
├———————┤
│ 靜態(tài)數(shù)據(jù)區(qū) │
├———————┤
│ …… │
├———————┤高端內(nèi)存區(qū)域
堆棧是一個(gè)先進(jìn)后出的數(shù)據(jù)結(jié)構(gòu),棧頂?shù)刂房偸切∮诘扔跅5幕刂贰N覀兛梢韵攘私庖幌潞瘮?shù)調(diào)用的過程,以便對(duì)堆棧在程序中的作用有更深入的了解。不同的語言有不同的函數(shù)調(diào)用規(guī)定,這些因素有參數(shù)的壓入規(guī)則和堆棧的平衡。windows API的調(diào)用規(guī)則和ANSI C的函數(shù)調(diào)用規(guī)則是不一樣的,前者由被調(diào)函數(shù)調(diào)整堆棧,后者由調(diào)用者調(diào)整堆棧。兩者通過“__stdcall”和“__cdecl”前綴區(qū)分。先看下面這段代碼:
#include <stdio.h>
void __stdcall func(int param1,int param2,int param3)
{
int var1=param1;
int var2=param2;
int var3=param3;
printf("0x%08x\n",¶m1); //打印出各個(gè)變量的內(nèi)存地址
printf("0x%08x\n",¶m2);
printf("0x%08x\n\n",¶m3);
printf("0x%08x\n",&var1);
printf("0x%08x\n",&var2);
printf("0x%08x\n\n",&var3);
return;
}
int main()
{
func(1,2,3);
return 0;
}
編譯后的執(zhí)行結(jié)果是:
0x0012ff78
0x0012ff7c
0x0012ff80
0x0012ff68
0x0012ff6c
0x0012ff70
├———————┤<—函數(shù)執(zhí)行時(shí)的棧頂(ESP)、低端內(nèi)存區(qū)域
│ …… │
├———————┤
│ var 1 │
├———————┤
│ var 2 │
├———————┤
│ var 3 │
├———————┤
│ RET │
├———————┤<—“__cdecl”函數(shù)返回后的棧頂(ESP)
│ parameter 1 │
├———————┤
│ parameter 2 │
├———————┤
│ parameter 3 │
├———————┤<—“__stdcall”函數(shù)返回后的棧頂(ESP)
│ …… │
├———————┤<—棧底(基地址 EBP)、高端內(nèi)存區(qū)域
上圖就是函數(shù)調(diào)用過程中堆棧的樣子了。首先,三個(gè)參數(shù)以從又到左的次序壓入堆棧,先壓“param3”,再壓“param2”,最后壓入“param1”;然后壓入函數(shù)的返回地址(RET),接著跳轉(zhuǎn)到函數(shù)地址接著執(zhí)行(這里要補(bǔ)充一點(diǎn),介紹UNIX下的緩沖溢出原理的文章中都提到在壓入RET后,繼續(xù)壓入當(dāng)前EBP,然后用當(dāng)前ESP代替EBP。然而,有一篇介紹windows下函數(shù)調(diào)用的文章中說,在windows下的函數(shù)調(diào)用也有這一步驟,但根據(jù)我的實(shí)際調(diào)試,并未發(fā)現(xiàn)這一步,這還可以從param3和var1之間只有4字節(jié)的間隙這點(diǎn)看出來);第三步,將棧頂(ESP)減去一個(gè)數(shù),為本地變量分配內(nèi)存空間,上例中是減去12字節(jié)(ESP=ESP-3*4,每個(gè)int變量占用4個(gè)字節(jié));接著就初始化本地變量的內(nèi)存空間。由于“__stdcall”調(diào)用由被調(diào)函數(shù)調(diào)整堆棧,所以在函數(shù)返回前要恢復(fù)堆棧,先回收本地變量占用的內(nèi)存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前壓入?yún)?shù)占用的內(nèi)存(ESP=ESP+3*4),繼續(xù)執(zhí)行調(diào)用者的代碼。參見下列匯編代碼:
;--------------func 函數(shù)的匯編代碼-------------------
:00401000 83EC0C sub esp, 0000000C //創(chuàng)建本地變量的內(nèi)存空間
:00401003 8B442410 mov eax, dword ptr [esp+10]
:00401007 8B4C2414 mov ecx, dword ptr [esp+14]
:0040100B 8B542418 mov edx, dword ptr [esp+18]
:0040100F 89442400 mov dword ptr [esp], eax
:00401013 8D442410 lea eax, dword ptr [esp+10]
:00401017 894C2404 mov dword ptr [esp+04], ecx
……………………(省略若干代碼)
:00401075 83C43C add esp, 0000003C ;恢復(fù)堆棧,回收本地變量的內(nèi)存空間
:00401078 C3 ret 000C ;函數(shù)返回,恢復(fù)參數(shù)占用的內(nèi)存空間
;如果是“__cdecl”的話,這里是“ret”,堆棧將由調(diào)用者恢復(fù)
;-------------------函數(shù)結(jié)束-------------------------
;--------------主程序調(diào)用func函數(shù)的代碼--------------
:00401080 6A03 push 00000003 //壓入?yún)?shù)param3
:00401082 6A02 push 00000002 //壓入?yún)?shù)param2
:00401084 6A01 push 00000001 //壓入?yún)?shù)param1
:00401086 E875FFFFFF call 00401000 //調(diào)用func函數(shù)
;如果是“__cdecl”的話,將在這里恢復(fù)堆棧,“add esp, 0000000C”
聰明的讀者看到這里,差不多就明白緩沖溢出的原理了。先來看下面的代碼:
#include <stdio.h>
#include <string.h>
void __stdcall func()
{
char lpBuff[8]="\0";
strcat(lpBuff,"AAAAAAAAAAA");
return;
}
int main()
{
func();
return 0;
}
編譯后執(zhí)行一下回怎么樣?哈,“"0x00414141"指令引用的"0x00000000"內(nèi)存。該內(nèi)存不能為"read"。”,“非法操作”嘍!"41"就是"A"的16進(jìn)制的ASCII碼了,那明顯就是strcat這句出的問題了。"lpBuff"的大小只有8字節(jié),算進(jìn)結(jié)尾的\0,那strcat最多只能寫入7個(gè)"A",但程序?qū)嶋H寫入了11個(gè)"A"外加1個(gè)\0。再來看看上面那幅圖,多出來的4個(gè)字節(jié)正好覆蓋了RET的所在的內(nèi)存空間,導(dǎo)致函數(shù)返回到一個(gè)錯(cuò)誤的內(nèi)存地址,執(zhí)行了錯(cuò)誤的指令。如果能精心構(gòu)造這個(gè)字符串,使它分成三部分,前一部份僅僅是填充的無意義數(shù)據(jù)以達(dá)到溢出的目的,接著是一個(gè)覆蓋RET的數(shù)據(jù),緊接著是一段shellcode,那只要著個(gè)RET地址能指向這段shellcode的第一個(gè)指令,那函數(shù)返回時(shí)就能執(zhí)行shellcode了。但是軟件的不同版本和不同的運(yùn)行環(huán)境都可能影響這段shellcode在內(nèi)存中的位置,那么要構(gòu)造這個(gè)RET是十分困難的。一般都在RET和shellcode之間填充大量的NOP指令,使得exploit有更強(qiáng)的通用性。
├———————┤<—低端內(nèi)存區(qū)域
│ …… │
├———————┤<—由exploit填入數(shù)據(jù)的開始
│ │
│ buffer │<—填入無用的數(shù)據(jù)
│ │
├———————┤
│ RET │<—指向shellcode,或NOP指令的范圍
├———————┤
│ NOP │
│ …… │<—填入的NOP指令,是RET可指向的范圍
│ NOP │
├———————┤
│ │
│ shellcode │
│ │
├———————┤<—由exploit填入數(shù)據(jù)的結(jié)束
│ …… │
├———————┤<—高端內(nèi)存區(qū)域
windows下的動(dòng)態(tài)數(shù)據(jù)除了可存放在棧中,還可以存放在堆中。了解C++的朋友都知道,C++可以使用new關(guān)鍵字來動(dòng)態(tài)分配內(nèi)存。來看下面的C++代碼:
#include <stdio.h>
#include <iostream.h>
#include <windows.h>
void func()
{
char *buffer=new char[128];
char bufflocal[128];
static char buffstatic[128];
printf("0x%08x\n",buffer); //打印堆中變量的內(nèi)存地址
printf("0x%08x\n",bufflocal); //打印本地變量的內(nèi)存地址
printf("0x%08x\n",buffstatic); //打印靜態(tài)變量的內(nèi)存地址
}
void main()
{
func();
return;
}
程序執(zhí)行結(jié)果為:
0x004107d0
0x0012ff04
0x004068c0
可以發(fā)現(xiàn)用new關(guān)鍵字分配的內(nèi)存即不在棧中,也不在靜態(tài)數(shù)據(jù)區(qū)。VC編譯器是通過windows下的“堆(heap)”來實(shí)現(xiàn)new關(guān)鍵字的內(nèi)存動(dòng)態(tài)分配。在講“堆”之前,先來了解一下和“堆”有關(guān)的幾個(gè)API函數(shù):
HeapAlloc 在堆中申請(qǐng)內(nèi)存空間
HeapCreate 創(chuàng)建一個(gè)新的堆對(duì)象
HeapDestroy 銷毀一個(gè)堆對(duì)象
HeapFree 釋放申請(qǐng)的內(nèi)存
HeapWalk 枚舉堆對(duì)象的所有內(nèi)存塊
GetProcessHeap 取得進(jìn)程的默認(rèn)堆對(duì)象
GetProcessHeaps 取得進(jìn)程所有的堆對(duì)象
LocalAlloc
GlobalAlloc
當(dāng)進(jìn)程初始化時(shí),系統(tǒng)會(huì)自動(dòng)為進(jìn)程創(chuàng)建一個(gè)默認(rèn)堆,這個(gè)堆默認(rèn)所占內(nèi)存的大小為1M。堆對(duì)象由系統(tǒng)進(jìn)行管理,它在內(nèi)存中以鏈?zhǔn)浇Y(jié)構(gòu)存在。通過下面的代碼可以通過堆動(dòng)態(tài)申請(qǐng)內(nèi)存空間:
HANDLE hHeap=GetProcessHeap();
char *buff=HeapAlloc(hHeap,0,8);
其中hHeap是堆對(duì)象的句柄,buff是指向申請(qǐng)的內(nèi)存空間的地址。那這個(gè)hHeap究竟是什么呢?它的值有什么意義嗎?看看下面這段代碼吧:
#pragma comment(linker,"/entry:main") //定義程序的入口
#include <windows.h>
_CRTIMP int (__cdecl *printf)(const char *, ...); //定義STL函數(shù)printf
/*---------------------------------------------------------------------------
寫到這里,我們順便來復(fù)習(xí)一下前面所講的知識(shí):
(*注)printf函數(shù)是C語言的標(biāo)準(zhǔn)函數(shù)庫中函數(shù),VC的標(biāo)準(zhǔn)函數(shù)庫由msvcrt.dll模塊實(shí)現(xiàn)。
由函數(shù)定義可見,printf的參數(shù)個(gè)數(shù)是可變的,函數(shù)內(nèi)部無法預(yù)先知道調(diào)用者壓入的參數(shù)個(gè)數(shù),函數(shù)只能通過分析第一個(gè)參數(shù)字符串的格式來獲得壓入?yún)?shù)的信息,由于這里參數(shù)的個(gè)數(shù)是動(dòng)態(tài)的,所以必須由調(diào)用者來平衡堆棧,這里便使用了__cdecl調(diào)用規(guī)則。BTW,Windows系統(tǒng)的API函數(shù)基本上是__stdcall調(diào)用形式,只有一個(gè)API例外,那就是wsprintf,它使用__cdecl調(diào)用規(guī)則,同printf函數(shù)一樣,這是由于它的參數(shù)個(gè)數(shù)是可變的緣故。
---------------------------------------------------------------------------*/
void main()
{
HANDLE hHeap=GetProcessHeap();
char *buff=HeapAlloc(hHeap,0,0x10);
char *buff2=HeapAlloc(hHeap,0,0x10);
HMODULE hMsvcrt=LoadLibrary("msvcrt.dll");
printf=(void *)GetProcAddress(hMsvcrt,"printf");
printf("0x%08x\n",hHeap);
printf("0x%08x\n",buff);
printf("0x%08x\n\n",buff2);
}
執(zhí)行結(jié)果為:
0x00130000
0x00133100
0x00133118
hHeap的值怎么和那個(gè)buff的值那么接近呢?其實(shí)hHeap這個(gè)句柄就是指向HEAP首部的地址。在進(jìn)程的用戶區(qū)存著一個(gè)叫PEB(進(jìn)程環(huán)境塊)的結(jié)構(gòu),這個(gè)結(jié)構(gòu)中存放著一些有關(guān)進(jìn)程的重要信息,其中在PEB首地址偏移0x18處存放的ProcessHeap就是進(jìn)程默認(rèn)堆的地址,而偏移0x90處存放了指向進(jìn)程所有堆的地址列表的指針。windows有很多API都使用進(jìn)程的默認(rèn)堆來存放動(dòng)態(tài)數(shù)據(jù),如windows 2000下的所有ANSI版本的函數(shù)都是在默認(rèn)堆中申請(qǐng)內(nèi)存來轉(zhuǎn)換ANSI字符串到Unicode字符串的。對(duì)一個(gè)堆的訪問是順序進(jìn)行的,同一時(shí)刻只能有一個(gè)線程訪問堆中的數(shù)據(jù),當(dāng)多個(gè)線程同時(shí)有訪問要求時(shí),只能排隊(duì)等待,這樣便造成程序執(zhí)行效率下降。
最后來說說內(nèi)存中的數(shù)據(jù)對(duì)齊。所位數(shù)據(jù)對(duì)齊,是指數(shù)據(jù)所在的內(nèi)存地址必須是該數(shù)據(jù)長度的整數(shù)倍,DWORD數(shù)據(jù)的內(nèi)存起始地址能被4除盡,WORD數(shù)據(jù)的內(nèi)存起始地址能被2除盡,x86 CPU能直接訪問對(duì)齊的數(shù)據(jù),當(dāng)他試圖訪問一個(gè)未對(duì)齊的數(shù)據(jù)時(shí),會(huì)在內(nèi)部進(jìn)行一系列的調(diào)整,這些調(diào)整對(duì)于程序來說是透明的,但是會(huì)降低運(yùn)行速度,所以編譯器在編譯程序時(shí)會(huì)盡量保證數(shù)據(jù)對(duì)齊。同樣一段代碼,我們來看看用VC、Dev-C++和lcc三個(gè)不同編譯器編譯出來的程序的執(zhí)行結(jié)果:
#include <stdio.h>
int main()
{
int a;
char b;
int c;
printf("0x%08x\n",&a);
printf("0x%08x\n",&b);
printf("0x%08x\n",&c);
return 0;
}
這是用VC編譯后的執(zhí)行結(jié)果:
0x0012ff7c
0x0012ff7b
0x0012ff80
變量在內(nèi)存中的順序:b(1字節(jié))-a(4字節(jié))-c(4字節(jié))。
這是用Dev-C++編譯后的執(zhí)行結(jié)果:
0x0022ff7c
0x0022ff7b
0x0022ff74
變量在內(nèi)存中的順序:c(4字節(jié))-中間相隔3字節(jié)-b(占1字節(jié))-a(4字節(jié))。
這是用lcc編譯后的執(zhí)行結(jié)果:
0x0012ff6c
0x0012ff6b
0x0012ff64
變量在內(nèi)存中的順序:同上。
三個(gè)編譯器都做到了數(shù)據(jù)對(duì)齊,但是后兩個(gè)編譯器顯然沒VC“聰明”,讓一個(gè)char占了4字節(jié),浪費(fèi)內(nèi)存哦。
基礎(chǔ)知識(shí):
堆棧是一種簡單的數(shù)據(jù)結(jié)構(gòu),是一種只允許在其一端進(jìn)行插入或刪除的線性表。允許插入或刪除操作的一端稱為棧頂,另一端稱為棧底,對(duì)堆棧的插入和刪除操作被稱為入棧和出棧。有一組CPU指令可以實(shí)現(xiàn)對(duì)進(jìn)程的內(nèi)存實(shí)現(xiàn)堆棧訪問。其中,POP指令實(shí)現(xiàn)出棧操作,PUSH指令實(shí)現(xiàn)入棧操作。CPU的ESP寄存器存放當(dāng)前線程的棧頂指針,EBP寄存器中保存當(dāng)前線程的棧底指針。CPU的EIP寄存器存放下一個(gè)CPU指令存放的內(nèi)存地址,當(dāng)CPU執(zhí)行完當(dāng)前的指令后,從EIP寄存器中讀取下一條指令的內(nèi)存地址,然后繼續(xù)執(zhí)行。